Progress in Cold-Wall Epitaxy for 4H-SiC High-Power Devices


Article Preview

Cold-wall vapor phase epitaxy was utilized to grow uniform 4H-SiC layers with abrupt doping interfaces on 4o off-axis substrates. Concentrations of Al were reduced roughly 200x after 0.1 μm of epitaxy after trimethylaluminum flow was stopped. Thickness uniformity of cold-wall epitaxy across 3” wafers was as good as 3.2%. Minority carrier diffusion lengths of 27 μm-thick 4H-SiC epitaxy grown in a cold-wall design were as high as 58 μm.



Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall




L.B. Rowland et al., "Progress in Cold-Wall Epitaxy for 4H-SiC High-Power Devices", Materials Science Forum, Vols. 556-557, pp. 141-144, 2007

Online since:

September 2007




[1] Ö. Danielsson, C. Hallin and E. Janzén: J. Cryst. Growth Vol. 252 (2003), p.289.

[2] A. Schöner: in Silicon Carbide: Recent Major Advances (eds. W. J. Choyke, H. Matsunami and G. Pensl, Springer-Verlag, Berlin 2004), p.229.

[3] B. Thomas and C. Hecht: Mater. Sci. Forum Vol. 483-485 (2005), p.141.

[4] A. A. Burk, Jr. and L. B. Rowland: Phys. Stat. Sol (b) Vol. 202 (1997), p.263.

[5] L. B. Rowland, C. Li, G. T. Dunne and J. A. Fronheiser: Mater. Res. Soc. Symp. Proc. Vol. 911 (2006), p.0911-B09-01.

[6] N. Nordell, A. Schöner and M. K. Linnarsson: J. Electron. Mater. Vol. 26 (1997), p.187.

[7] S. Karlsson, N. Nordell, F. Spadafora and M. Linnarsson: Mater. Sci. Eng. B Vol. 61-62 (1999), p.143.

[8] U. Forsberg, O. Danielsson, A. Henry, M. K. Linnarsson and E. Janzen: J. Cryst. Growth Vol. 253 (2003), p.340.

[9] A. K. Agarwal, J. B. Casady, L. B. Rowland, S. Seshadri, R. R. Siergiej, W. F. Valek, and C. D. Brandt: IEEE Electron. Device Lett. Vol. 18 (1997), p.118.

[10] X. Guo, L. B. Rowland, G. T. Dunne, J. A. Fronheiser, P. M. Sandvik, A. L. Beck and J. C. Campbell: IEEE Photon. Technol. Lett. Vol. 18 (2006), p.136.


[11] J. J. Sumakeris, R. Singh, M. J. Paisley, S. G. Mueller, H. M. Hobgood, C. H. Carter, Jr., and A. A. Burk, Jr.: United States Patent 6, 849, 874, February 1, (2005).

[12] J. Bloem and A. H. Goemans: United States Patent 3, 892, 940, July 1, 1975. Fig. 3. Typical EBIC image of 0. 005 cm2 Schottky diode formed on 5 µm thick coldwall epitaxy. Fig. 4. Diffusion length from EBIC signal decay for 27-µm thick cold wall epitaxy (GE epi) and 40-µm-thick commercial epitaxy. 0 50 100 150 200 250 300 0. 0 0. 2 0. 4 0. 6 0. 8 1. 0 Leff=14 µm (Commercial) Leff=58 µm (GE epi) EBIC signal, a. u. distance, µm[ ].