Hydrogen Effect on SiC Single Crystal Prepared by the Physical Vapor Transport Method


Article Preview

We investigated the effects of hydrogen addition to the growth process of SiC single crystal using sublimation physical vapor transport (PVT) techniques. Hydrogen was periodically added to an inert gas for the growth ambient during the SiC bulk growth. Grown 2”-SiC single crystals were proven to be the polytype of 6H-SiC and carrier concentration levels of about 1017/cm3 was determined from Hall measurements. As compared to the characteristics of SiC crystal grown without using hydrogen addition, the SiC crystal grown with periodically modulated hydrogen addition definitely exhibited lower carrier concentration and lower micropipe density as well as reduced growth rate.



Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall




J. G. Kim et al., "Hydrogen Effect on SiC Single Crystal Prepared by the Physical Vapor Transport Method", Materials Science Forum, Vols. 556-557, pp. 25-28, 2007

Online since:

September 2007




[1] J. C. Zolper and M. Skowronski: MRS Bulletin Vol. 30 April (2005), p.273.

[2] Z. Herro, M. Bickermann, B. M. Epelbaum, P. Masri and A. Winnacker: Mater. Sci. Forum Vol. 433-436 (2003), p.67.

DOI: https://doi.org/10.4028/www.scientific.net/msf.433-436.67

[3] Y. Kitou, W. Bahng, T. Kato, S. Nishizawa and K. Arai: Mater. Sci. Forum Vol. 389-393 (2002), p.83.

[4] V. Ramachandran, M. F. Brady, A. R. Smith and R. M. Feenstra: J. Electron. Mat. 27 (1998), p.308.

[5] M. A. Fanton, Q. Li, A. Y. Polyakov, M. Skowronski, R. Cavalero and R. Ray: J. Cryst. Growth Vol. 287 (2006), p.339.

[6] M. V. Bogdanov, A. O. Galyukov, S. Yu. Karpov, A.V. Kulik, S. K. Kochuguev, D. Kh. Ofengeim, A. V. Tsiryulnikov, M. S. Ramm, A. I. Zhmakin and Yu. N. Makarov: J. Cryst. Growth Vol. 225 (2001), p.307.

DOI: https://doi.org/10.1016/s0022-0248(01)00879-x

[7] J. G. Kim, K. R. Ku, D. J. Kim, S. P. Kim, W. J. Lee, B. C. Shin, G. H. Lee, I. S. Kim: Mater. Sci. Forum Vols. 483-485 (2005), p.47.

[8] K. R. Ku, J. G. Kim, J. D. Seo, J. Y. Lee, M. O. Kyun, W. J. Lee, G. H. Lee, I. S. Kim and B. C. Shin: Mater. Sci. Forum Vol. 527-529, (2006), p.83.

[9] R. Weingartner, P. J. Wellmann, M. Bickermann, D. Hofmann and T. L. Straubinger: Appl. Phys. Lett. Vol. 80 (1) (2002), p.70 (a) (b) micropipe etch pit micropipe etch pit 100µm m 100µm.