Quality Aspects for the Production of SiC Bulk Crystals


Article Preview

For several years the major focus of material issues in SiC substrates was laid on the reduction of macroscopic defects like polytype inclusions, low angle grain boundaries and micropipes. Since then significant improvements have been achieved and micropipe densities could be reduced to values below 1 cm-2. Nevertheless the fabrication of high quality substrates at high volume and low cost is still challenging. Therefore preconditions for reproducible process and quality control will be discussed. Since it is obvious that dislocations are the main reason for degradation in power devices the prevailing attention has also been shifted to that field of material research. Intense studies were utilized on dislocation and stacking fault formation during sublimation growth. For this reason we systematically varied crucial parameters of the crystal growth process and applied several specific characterization methods, e.g. KOH-defect-etching, electron microscopy and optical microscopy, to evaluate resulting material properties. The investigations were accompanied by failure analysis on devices of the Schottky-type. We found out that for the improvement of substrate quality emphasis has to be laid on the reduction of thermoelastic stress in the growing crystal. The results of numerical calculations enabled us to derive moderate growth conditions with reduced temperature gradients and correspondingly low defect concentration.



Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall




T. L. Straubinger et al., "Quality Aspects for the Production of SiC Bulk Crystals", Materials Science Forum, Vols. 556-557, pp. 3-8, 2007

Online since:

September 2007




[1] K.M. Hergenrother, S.E. Mayer and A.I. Mlaysky: Silicon Carbide (Pergamon Press, (1960), p.60.

[2] Y.M. Tairov and V.F. Tsvetkov: Journal of Crystal Growth Vol. 43 (1978), p.209.

[3] G. Ziegler, P. Lanig, D. Theis and C. Weyrich: IEEE Trans. Electron Dev. Vol. 30 (1983), p.277.

[4] M. Anikin, M. Pons, K. Chourou, O. Chaix, J.M. Bluet, V. Lauer and R. Madar: Mat. Sci. Forum Vol. 264-268 (1998), p.45.

DOI: 10.4028/www.scientific.net/msf.264-268.45

[5] W. Bang, Y. Kitou, S. Nishizawa, H. Yamguchi, M.N. Khan, N. Oyanagi, K. Arai and S. Nishino: Mat. Sci. Forum Vol. 338 (2000), p.103.

[6] H. Jacobson, R. Yakimova, P. Raback, M. Syväjärvi, J. Birch and E. Janzen: Mat. Sci. Forum Vol. 389 (2002), p.39.

[7] T. Furusho, S. Ohshima and S. Nishino: Mat. Sci. Forum Vol. 353-356 (2001), p.73.

[8] N. Schulze, D.L. Barret, G. Pensl, S. Rohmfeld and M. Hundhausen: Mat. Sci. Eng. B61-62 (1999), p.44.

[9] F.C. Frank: Acta Cryst. Vol. 4 (1951), p.497.

[10] E. Emorhokpor, E. Carlson, J. Wan, A. Weber, C. Basceri, J. Jenny, R. Sandhu , J. Oliver, F. Burkeen, A. Somanchi, V. Velidandla, F. Orazio, A. Blew, M. Goorsky, M. Dudley and W.M. Vetter: poster @ ICSCRM05, to be published.

DOI: 10.4028/www.scientific.net/msf.527-529.443

[11] E. Schmitt, T. Straubinger, M. Rasp, A.D. Weber: E-MRS IUMRS ICEM Spring Meeting (2006), to be puplished.

[12] D. Hofmann, E. Schmitt, M. Bickermann, M. Kölbl, P.J. Wellmann and A. Winnacker: Materials Science and Engineering Vol. B61-62 (1999), p.48.

[13] E. Schmitt, R. Eckstein, M. Kölbl and A. -D. Weber: Mat. Res. Soc. Proc. Vol. 572 (1999), p.271.

[14] R.A. Stein: Physica B Vol. 185 (1993), p.211.

[15] H. Lendenmann, F. Dahlquist, J.P. Bergman, H. Bleichner and C. Hallin: Mat. Sci. Forum Vol. 389-393 (2002), p.901.

[16] D. Hull and D.J. Bacon: Introduction to dislocations (Pergamon Press, 3rd edition, 1984), p.161.

Fetching data from Crossref.
This may take some time to load.