Deep Levels in Electron-Irradiated n- and p-type 4H-SiC Investigated by Deep Level Transient Spectroscopy

Abstract:

Article Preview

The authors have investigated deep levels in electron-irradiated n- and p-type 4H-SiC epilayers by deep level transient spectroscopy (DLTS). By low-energy electron irradiation at 116 keV, the Z1/2 and EH6/7 concentrations are increased in n-type samples, and the concentrations are almost unchanged after annealing at 950°C for 30 min. In p-type samples, the unknown centers, namely EP1 and EP2, are introduced by irradiation. By annealing at 950°C, the unknown centers are annealed out. The HK4 center (EV + 1.44 eV) is increased by the electron irradiation and subsequent annealing at 950°C. The dependence of increase in the trap concentrations by irradiation (NT) on the electron fluence reveals that NT for the Z1/2 and EH6/7 centers is in proportional to the 0.7 power of electron fluence, while the slope of the plot is 0.5 for the HK4 center. The Z1/2 and EH6/7 centers show similar annealing stage and are thermally stable up to 1500-1600°C, while the HK4 center is annealed out at about 1350°C. The Z1/2 and EH6/7 centers may be derived from a same origin (single carbon vacancy: VC) but different charge state. The HK4 center may be a complex including VC.

Info:

Periodical:

Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall

Pages:

331-334

Citation:

K. Danno and T. Kimoto, "Deep Levels in Electron-Irradiated n- and p-type 4H-SiC Investigated by Deep Level Transient Spectroscopy", Materials Science Forum, Vols. 556-557, pp. 331-334, 2007

Online since:

September 2007

Export:

Price:

$38.00

[1] T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W. J. Choyke, A. Schöner and N. Nordell: phys. stat. solidi (a) Vol. 162 (1997), p.199.

DOI: https://doi.org/10.1002/1521-396x(199707)162:1<199::aid-pssa199>3.0.co;2-0

[2] C. Hemmingsson, N. T. Son, O. Kordina, J. P. Bergman, E. Janzén, J. L. Lindström, S. Savage and N. Nordell: J. Appl. Phys. Vol. 81 (1997), p.6155.

[3] L. Storasta, J. P. Bergman, E. Janzén, A. Henry, and J. Lu: J. Appl. Phys. Vol. 96 (2004), p.4909.

[4] T. Troffer, M. Schadt, T. Frank, H. Itoh, G. Pensl, J. Heindl, H. P. Strunk and M. Maier: phys. stat. solidi (a) Vol. 162 (1997), p.277.

DOI: https://doi.org/10.1002/1521-396x(199707)162:1<277::aid-pssa277>3.0.co;2-c

[5] K. Danno and T. Kimoto: Jpn. J. Appl. Phys. Vol. 45 (2006), p. L285.

[6] K. Danno, T. Kimoto and H. Matsunami: Appl. Phys. Lett. Vol. 86 (2005), p.122104.

[7] H. J. Von Bardeleben, J. L. Cantin, L. Henry, M. F. Barthe: Phys. Rev. B Vol 62 (2003), p.10841.

[8] M. Bockstedte, A. Mattausch, and O. Pankratov: Silicon Carbide Recent Major Advances, edted by W.J. Choyke, H. Matsunami, and G. Pensl (Springer, Berlin, 2003), p.27.

[9] T. Kimoto, K. Hashimoto, and H. Matsunami: Jpn. J. Appl. Phys. Vol. 42 (2003), p.7294.

Fetching data from Crossref.
This may take some time to load.