Growth and Electrical Characterization of 4H-SiC Epilayers

Abstract:

Article Preview

Homoepitaxial growth of 4H-SiC and characterization of deep levels obtained mainly in the authors’ group have been reviewed. The growth rate has been increased to 24 om/h with keeping very good surface morphology and low trap concentration on 8o off-axis 4H-SiC(0001) by hot-wall chemical vapor deposition at 1650oC. The increased growth rate has resulted in the enhanced conversion of basal-plane dislocations into threading edge dislocations in epilayers. The Z1/2 and EH6/7 concentrations can be decreased to about 1·1012 cm-3 by increasing the C/Si ratio during CVD. Extensive investigation on as-grown and electron-irradiated epilayers indicates that both the Z1/2 and EH6/7 centers may be attributed to the same origin related to carbon displacement, probably a carbon vacancy. Deep levels observed in as-grown and irradiated p-type 4H-SiC are also presented.

Info:

Periodical:

Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall

Pages:

35-40

Citation:

T. Kimoto et al., "Growth and Electrical Characterization of 4H-SiC Epilayers", Materials Science Forum, Vols. 556-557, pp. 35-40, 2007

Online since:

September 2007

Export:

Price:

$38.00

[1] K. Fujihira, T. Kimoto and H. Matsunami: J. Cryst. Growth, Vol. 255 (2003), p.136.

[2] H. Tsuchida, I. Kamata, T. Jikimoto and K. Izumi: Mater. Sci. Forum, Vol. 389-393 (2002), p.171.

[3] T. Ohno, H. Yamaguchi, S. Kuroda, K. Kojima, T. Suzuki and K. Arai: J. Cryst. Growth, Vol. 271 (2004), p.1.

[4] H. Fujiwara, T. Kimoto, T. Tojo, and H. Matsunami: Appl. Phys. Lett. Vol. 87 (2005), p.051912.

[5] T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W.J. Choyke, A. Schöner, and N. Nordell: phys. stat. sol. (a), Vol. 162 (1997), p.199.

DOI: https://doi.org/10.1002/1521-396x(199707)162:1<199::aid-pssa199>3.0.co;2-0

[6] N.T. Son, Mt. Wagner, C.G. Hemmingsson, L. Storasta, B. Magnusson, W.M. Chen, S. Greulich-Weber, J.M. Spaeth, and E. Janzén: Silicon Carbide - Recent Major Advances (Springer, Berlin, 2004), p.461.

DOI: https://doi.org/10.1007/978-3-642-18870-1_19

[7] T. Kimoto, S. Nakazawa, K. Hashimoto and H. Matsunami: Appl. Phys. Lett., Vol. 79 (2001), p.2761.

[8] S. Weiss and R. Kassing: Solid State Electron. Vol. 31 (1988), p.3032.

[9] S.D. Brotherton: Solid State Electron. Vol. 26 (1983), p.987.

[10] T. Hori, K. Danno, and T. Kimoto: this volume.

[11] Ch. Harberstroh, R. Helbig, and R.A. Stein: J. Appl. Phys. Vol. 76 (1994), p.509.

[12] T. Tsuchida, T. Miyanagi, I. Kamata, T. Nakamura, K. Izumi, K. Nakayama, R. Ishii, K. Asano and Y. Sugawara: Mater. Sci. Forum, Vol. 483-485 (2005), p.97.

[13] S. Ha, P. Mieszkowski, M. Skowronski and L. B. Rowland: J. Cryst. Growth, Vol. 244 (2002), p.257.

[14] C. Hemmingsson, N.T. Son, O. Kordina, J.P. Bergman, E. Janzén, J.L. Lindström, S. Savage, and N. Nordell: J. Appl. Phys. Vol. 81 (1997), p.6155.

[15] C. Hemmingsson, N.T. Son, A. Ellison, J. Zhang, and E. Janzén: Phys. Rev. Vol. B58 (1998), p.10119.

[16] T. Kimoto, K. Hashimoto, and H. Matsunami: Jpn. J. Appl. Phys. Vol. 42 (2003) p.7294.

[17] J. Zhang, L. Storasta, P. Bergman, N.T. Son, and E. Janzén: J. Appl. Phys. Vol. 93 (2003), p.4708.

[18] L. Storasta, J.P. Bergman, E. Janzén, A. Henry, J. Lu: J. Appl. Phys. Vol. 96 (2004), p.4909.

[19] K. Danno and T. Kimoto: this volume.

[20] A. Zywietz, J. Furthmüller, and F. Bechstedt: Phys. Rev. Vol. B59 (1999), p.12166.

[21] K. Danno and T. Kimoto: Jpn. J. Appl. Phys. Vol. 45 (2006), p. L285.

[22] T. Troffer, M. Schadt, T. Frank, H. Itoh, G. Pensl, J. Heindl, H.P. Strunk, and M. Maier: phys. stat. sol. (a), Vol. 162 (1997), p.277.

DOI: https://doi.org/10.1002/1521-396x(199707)162:1<277::aid-pssa277>3.0.co;2-c