Atomic Crack Defects Developing at Silicon Carbide Surfaces Studied by STM, Synchrotron Radiation-Based μ-spot XPS and LEEM


Article Preview

Atomic structure and morphology of 6H-SiC(0001) and 3C-SiC(100) surfaces are studied by scanning tunneling microscopy (STM), synchrotron radiation-based !-spot x-ray photoemission spectroscopy (!-spot XPS) and low energy electron microscopy (LEEM). STM shows very high quality Si-rich 6H-SiC(0001) 3x3 surfaces with less than 2% of atomic defects. Si removal upon annealing leads to atomic crack defects formation with a novel 2"3x2"3-R30° reconstruction coexisting with few 3x3 domains having no crack, suggesting important stress relief during the phase transition. LEEM also shows cracks formation on cubic 3C-SiC(100) surfaces and gives insights about surface morphology with large faceting and mesa (!m) formation. These defect fractures developing upon Si removal are likely to be also generated during initial oxidation since the initial oxygen interaction tends to relieve surface strain on SiC in contrast to Si surfaces. These atomic crack defects could be related to the interface electronic states recurrent at SiO2/SiC interfaces.



Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall




P. Soukiassian et al., "Atomic Crack Defects Developing at Silicon Carbide Surfaces Studied by STM, Synchrotron Radiation-Based μ-spot XPS and LEEM", Materials Science Forum, Vols. 556-557, pp. 481-486, 2007

Online since:

September 2007




[1] C.E. Renshaw and E.M. Schulson, Nature 412 (2001), p.897.

[2] F. Célarié, D. Bonamy, S. Prades, L. Ferrero, E. Bouchaud, C. Guillot and C. Marlière, Phys. Rev. Lett. 90 (2003), p.075504; F. Paun and E. Bouchaud, Int. J. Fracture 121 (2003), p.43.


[3] G. Galli, F. Gygi and A. Catellani, Phys. Rev. Lett. 82 (1999), p.3476.

[4] H. Kikuchi, R. Kalia, A. Nakano, P. Vashishta, P.S. Branicio and F. Shimojo, J. Appl. Phys. 98, (2005), p.103524.

[5] SiC, Review of Fundamental Questions and Applications to Current Device Technology, edited by W.J. Choyke, H.M. Matsunami and G. Pensl, Akademie Verlag, Berlin, Vol. I & II (1998).

[6] P. Soukiassian, F. Semond, A. Mayne and G. Dujardin, Phys. Rev. Lett. 79 (1997), p.2498.

[7] V. Derycke, P. Soukiassian, F. Amy, Y.J. Chabal, M. D'angelo, H. Enriquez and M. Silly, Nature Materials 2 (2003), p.253; P. Soukiassian, Appl. Phys. A 82 (2006), p.421, and Ref. therein.

[8] P. Soukiassian and H. Enriquez, J. Phys. Cond. Mat. 16 (2004), p. S1611-S1658, and Ref. therein.

[9] F. Amy, P. Soukiassian and C. Brylinski, Appl. Phys. Lett. 85 (2004), p.926.

[10] F. Amy, H. Enriquez, P. Soukiassian, P. -F. Storino, Y.J. Chabal, A.J. Mayne, G. Dujardin, Y.K. Hwu and C. Brylinski, Phys. Rev. Lett. 86 (2001), p.4342.


[11] F. Amy, P. Soukiassian, Y.K. Hwu and C. Brylinski, Phys. Rev. B 65 (2002), p.165323.

[12] U. Starke, J. Schardt, J. Bernhardt, M. Franke, K. Reuter, H. Wedler, K. Heinz, J. Furthmuller, P. Kackell, F. Bechstedt, Phys. Rev. Lett. 80 (1998), p.758; U. Starke in.


[5] p.475, and Ref. therein.

[13] M. Naitoh, J. Takami, S. Nishigaki and T. Toyama, Appl. Phys. Lett. 75 (1999), p.650.

[14] Yun Li, Ling Ye and Xun Wang, Surf. Sci. 600 (2006), p.298.

[15] H. Yano, T. Kimoto and H. Matsunami, Appl. Phys. Lett. 81 (2002), p.301.

[16] M.G. Silly, J. Roy, H. Enriquez, P. Soukiassian, C. Crotti, S. Fontana and P. Perfetti, J. Vac. Sci. Technol. B 22 (2004), p.2226.

[17] J. Patten, Wei Gao and Kudo Yasuto, J. Manuf. Sci. Eng. 127 (2005), p.522.

[18] P. Soukiassian, T.O. Mentes and A. Locatelli, recent LEEM and X-PEEM experiments.

[19] J. Wan, M.A. Capano, M.R. Melloch, J.A. Cooper Jr., IEEE Elec. Dev. Lett. 23 (2002), p.482.