Sodium Enhanced Oxidation of Si-Face 4H-SiC: A Method to Remove Near Interface Traps


Article Preview

We demonstrate how sodium enhanced oxidation of Si face 4H-SiC results in removal of near-interface traps at the SiO2/4H-SiC interface. These detrimental traps have energy levels close to the SiC conduction band edge and are responsible for low electron inversion channel mobilities (1-10 cm2/Vs) in Si face 4H-SiC metal-oxide-semiconductor field effect transistors. The presence of sodium during oxidation increases the oxidation rate and suppresses formation of these nearinterface traps resulting in high inversion channel mobility of 150 cm2/Vs in such transistors. Sodium can be incorporated by using carrier boats made of sintered alumina during oxidation or by deliberate sodium contamination of the oxide during formation of the SiC/SiO2 interface.



Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall




E. Ö. Sveinbjörnsson et al., "Sodium Enhanced Oxidation of Si-Face 4H-SiC: A Method to Remove Near Interface Traps", Materials Science Forum, Vols. 556-557, pp. 487-492, 2007

Online since:

September 2007




[1] J.A. Cooper, Jr., and A. Agarwal: Proceedings of the IEEE Vol. 90 (2002), p.956.

[2] V.V. Afanasev, A. Stesmans, F. Ciobanu, G. Pensl, K.Y. Cheong, and S. Dimitrijev: Appl. Phys. Lett. Vol. 82 (2003), p.568.

[3] G. Y. Chung, C.C. Tin, J. R. Williams, K. McDonald, M. Di Ventra, S. T. Pantelides, L.C. Feldman, and R. A. Weller: Appl. Phys. Lett. Vol. 76 (2000), p.1713.

[4] V.V. Afanasev, A. Stesmans, M. Bassler, G. Pensl, and M.J. Schulz: Appl. Phys. Lett. Vol. 76 (2000), p.336.

[5] T.E. Rudenko, I.N. Osiyuk, I.P. Tyagulski, H.Ö. Ólafsson, and E.Ö. Sveinbjörnsson: Solid State Electr. Vol. 49 (2005), p.545.


[6] S. Dimitrijev, P. Tanner, H.B. Harrison: Microelectronics Reliability Vol. 39 (1999) p.441.

[7] G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, and J.W. Palmour: IEEE Electr. Dev. Lett. Vol. 22 (2001), p.176.


[8] J. M. Knaup, P. Deak, Th. Frauenheim, A. Gali, Z. Hajnal, and W.J. Choyke: Phys. Rev. B72 (2005), Art. No. 115323.

[9] K. McDonald, R.A. Weller, S.T. Pantelides, L.C. Feldman, G.Y. Chung, C.C. Tin, and J.R. Williams: J. Appl. Phys. Vol. 93 (2003), p.2719.

[10] R. Schörner, P. Friedrichs, D. Peters, D. Stephani, S. Dimitrijev, and P. Jamet: Appl. Phys. Lett. Vol. 80 (2002), p.4253.

[11] G. Gudjonsson, H.Ö. Ólafsson, F. Allerstam, P-Å. Nilsson, E.Ö. Sveinbjörnsson, H. Zirath, T. Rödle, and R. Jos: IEEE Electr. Dev. Lett. Vol. 26 (2005), p.96.


[12] H.Ö. Ólafsson: Ph. D. thesis, Chalmers University of Technology, Göteborg, Sweden, (2004).

[13] H.A. Mar and J. G. Simmons: Solid State Electronics Vol. 17 (1974) p.131.

[14] R. Moene, E. Tijsen, M. Makkee, J.A. Moulijn: Appl. Catalysis A Vol. 184 (1999), p.127.

[15] Z. Zheng, R.E. Tressler, K.E. Spear: Corrosion Science Vol. 33 (1992), p.545.

[16] M. Riehl-Chuboda, S. Dupont, and P. Soukiassian: Surface Sci. Vol. 331-333 (1995), p.625.

[17] E. Opila: J. Am. Ceram. Soc. Vol. 78 (1995), p.1107.

[18] D.K. Schroder: Semiconductor Material and Device Characterization, 2nd edition, John Wiley & Sons, Inc., New York (1998).

[19] E.Ö. Sveinbjörnsson, G. Gudjonsson, F. Allerstam, H,Ö. Ólafsson, P-Å. Nilsson, H. Zirath, T. Rödle and R. Jos: Proceedings of the International Conference on SiC and related material (ICSCRM2005), Pittburgh, PA, p.961 (in press).


[20] E. Pippel, J. Woltersdorf, H.Ö. Ólafsson, and E.Ö. Sveinbjörnsson: J. Appl. Phys. Vol. 97 (2005), Art. No. 034302.

[21] F. Ciobanu, G. Pensl, V. Afanasev, and A. Schöner: Mater. Sci. Forum Vol. 483-485 (2005), p.693.