Generation of Amorphous SiO2/SiC Interface Structure by the First-Principles Molecular Dynamics Simulation

Abstract:

Article Preview

The performance of SiC MOSFET devices to date is below theoretically expected performance levels. This is widely considered to be attributed to defect at the SiO2/SiC interface that degrade the electrical performance of the device. To analyze the relationship between defect structures near the interface and electrical performances, advanced computer simulations were performed. A slab model using 444 atoms for an amorphous oxide layer on a 4H-SiC (0001) substrate was made by using first-principles molecular dynamic simulation code optimized for the Earth-Simulator. Simulated heating and rapid quenching was performed for the slab model in order to obtain a more realistic structure and electronic geometry of a-SiO2/4H-SiC interface. The heating temperature, the heating time and the speed of rapid quenching were 4000 K, 3.0 ps and -1000 K/ps, respectively. The interatomic distance and the bond angles of SiO2 layers after the calculation are agree well with the most probable values of bulk a-SiO2 layers, and no coordination defects were observed in the neighborhood of SiC substrate.

Info:

Periodical:

Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall

Pages:

521-524

DOI:

10.4028/www.scientific.net/MSF.556-557.521

Citation:

A. Miyashita et al., "Generation of Amorphous SiO2/SiC Interface Structure by the First-Principles Molecular Dynamics Simulation", Materials Science Forum, Vols. 556-557, pp. 521-524, 2007

Online since:

September 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.