The Al2O3/4H-SiC Interface Investigated by Thermal Dielectric Relaxation Current Technique

Abstract:

Article Preview

Al2O3 has been grown by Atomic Layer Chemical Vapour Deposition (ALCVD) on ntype 4H-SiC using O3 as an oxidant and tri-methyl-aluminum (TMA) as a precursor. After deposition, annealing at 1000°C during 3h in different atmospheres (Ar, N2 and O2) was performed. Interface properties were studied by Capacitance-Voltage (CV) and Thermal Dielectric Relaxation Current (TDRC) measurements. The highest near-interface trap density (Nit) was deduced to be 4x1012 eV-1cm-2 between 0.36 eV and 0.5 eV below the conduction band, Ec, for O2 annealed samples, 2.8x1012 eV-1cm-2 between 0.42 eV and 0.56 eV below Ec for Ar annealed samples and 2.2x1012 eV-1cm-2 between 0.4 eV and 0.6 eV below Ec for N2 annealed samples. Only samples annealed in Ar exhibit a nearly trap free region close to Ec. Annealing in N2 is found to decrease Nit between 0.3 and 0.7 eV but shows a slightly higher Nit close the conduction band compared to the Ar case.

Info:

Periodical:

Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall

Pages:

537-540

Citation:

M. Avice et al., "The Al2O3/4H-SiC Interface Investigated by Thermal Dielectric Relaxation Current Technique", Materials Science Forum, Vols. 556-557, pp. 537-540, 2007

Online since:

September 2007

Keywords:

Export:

Price:

$38.00

[1] W. J. Choyke, H. Matsunami, and G. Pensl: Silicon Carbide: Recent Major Advances, Springer Series, Advanced Texts in Physics (2004).

DOI: https://doi.org/10.1007/978-3-642-18870-1

[2] H. Linewih, S. Dimitrijev, C. E. Weitzel: IEEE Trans. Elec. Dev Vol. 49 (2002), p.658.

[3] M. M. Maranovski, J. A. Cooper: IEEE Trans. Electron Devices Vol. 46 (2000), p.520.

[4] M. D. Groner, J.W. Elam, F.H. Fabreguette, S. M. George: Thin solid Films (2002), p.186.

[5] V.V. Afanas'ev, F. Ciobanu, S. Dimitrijev, G. Pensl: J. Phys. Cond. Mat. Vol. 16 (2004), p.1839.

[6] Y. Chang, F. Ducroquet, L. G. Gosset, A. Sibai: Journal de physique IV Vol. 11 (2001), p.139.

[7] Y. Chang, F. Ducroquet, E. Gautier, O. Renault: Microelec. Engineering Vol. 72 (2004), p.326.

[8] M. Avice, U. Grossner, O. Nilsen, B. Svensson: Mat. Sci. Forum Vol. 483-485 (2004), p.705.

[9] M. Avice, U. Grossner, I. Pinitilie, O. Nilsen, H. Fjellvåg, B. Svensson: to be published.

[10] T. Frank, G. Pensl: private communication.

[11] T. E. Rudenko, I. N. Osiyuk, I. P. Tyagulski, H. O. Olafsson, and E. O. Sveinbjornsson: Solid-State Electronics Vol. 49 (2005), p.545.

DOI: https://doi.org/10.1016/j.sse.2004.12.006

[12] J. G. Simmons and H. A. Mar: Physical Review B Vol. 8 (1973), p.3865.

[13] H. A. Mar and J. G. Simmons: Solid State Electronics Vol. 17 (1974), p.131.