Analysis of the Electrical Activation of P+ Implanted Layers as a Function of the Heating Rate of the Annealing Process


Article Preview

The surface morphology and the electrical activation of P+ implanted 4H-SiC were investigated with respect to annealing treatments that differ only for the heating rate. P+ implantation was carried out in lightly doped n-type epitaxial layers. The implantation temperature was 300 °C. The computed P profile was 250 nm thick with a concentration of 1×1020 cm-3. Two samples underwent annealing at 1400 °C in argon with different constant ramp up rates equal to 0.05° C/s and 40 °C/s. A third sample underwent an incoherent light Rapid Thermal Annealing (RTA) at 1100 °C in argon before the annealing at 1400 °C with the lower ramp rate. The ramp up of the RTA process is a few hundred degrees per second. Atomic Force Microscopy (AFM) micrographs pointed out that the surface roughness of the samples annealed at 1400 °C increases with increasing heating rate and that the critical temperature for surface roughening is above 1100 °C. Independently on the annealing cycle, Scanning Capacitance Microscopy (SCM) measurements showed that the P profiles are uniform over the implantation thickness and have plateau concentration around 9×1018 cm-3 in all the implanted samples. The fraction of P atoms activated as donors is 13% of the total implanted fluence.



Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall




M. Canino et al., "Analysis of the Electrical Activation of P+ Implanted Layers as a Function of the Heating Rate of the Annealing Process", Materials Science Forum, Vols. 556-557, pp. 571-574, 2007

Online since:

September 2007




[1] M. A. Capano, J. A. Cooper, M.R. Melloch, A. W. Saxler and W.C. Mitchel: Mater. Sci. Forum Vol. 338-342 (2000), p.703.

[2] M. Laube, F. Schmid, G. Pensl and G. Wagner: Mater. Sci. Forum Vol. 389-393 (2002), p.791.

[3] M. A. Capano, R. Santhakumar, R. Venugopal, M. R. Melloch and J. Cooper: J. Electr. Mat. Vol. 29 (2000), p.210.

[4] M. V. Rao: Solid-state Electronics 47, (2003), p.213.

[5] A. Poggi, R. Nipoti, F. Moscatelli, G. C. Cardinali and M. Canino: Mater. Sci. Forum Vol. 457460 (2004), p.945.

[6] S. Blanqué, R. Peréz, N. Mestres, S. Contreras, J. Camassel and P. Godignon: Proceedings of ICSCRM 2005, p.795.

[7] A. Poggi, R. Nipoti, F. Bergamini, S. Solmi, M. Canino and A. Carnera : Appl. Phys. Lett. Vol. 88, (2006), p.162106.

[8] R. Nipoti, A. Carnera, F. Bergamini, M. Canino, A. Poggi, S. Solmi and M. Passini: Mater. Res. Soc. Symp. Proc. Vol. 911 (2006) (in press).


[9] V. Raineri, L. Calcagno, F. Giannazzo, D. Goghero, F. Musumeci, F. Roccaforte and F. La Via: Mater. Sci. Forum Vol. 433-436 (2003), p.375.


[10] R. Nipoti and A. Parisini: Phylosophical Magazine B 80 (2000), p.647.