Use of Graphite Cap to Reduce Unwanted Post-Implantation Annealing Effects in SiC

Abstract:

Article Preview

6H and 4H–SiC epilayers were Al-implanted at room temperature with multiple energies (ranging from 25 to 300 keV) in order to form p-type layers with an Al plateau concentration of 4.5×1019 cm-3 and 9×1019 cm-3. Post-implantation annealing were performed at 1700 or 1800 °C up to 30 min in Ar ambient. During this process, some samples were encapsulated with a graphite (C) cap obtained by thermal conversion of a spin-coated AZ5214E photoresist. From Atomic Force Microscope measurements, the roughness is found to increase drastically with annealing temperature for unprotected samples while the C capped samples show a preservation of their surface states even for the highest annealing temperature. After 1800°C/30 min annealing, the RMS roughness is 0.46 nm for the lower fluence implanted samples, slightly higher than for unimplanted samples (0.31 nm). Secondary Ion Mass Spectroscopy measurements confirm that the C cap was totally removed from the SiC surface. The total Al-implanted fluence is preserved during postimplantation annealing. A redistribution of the Al dopants is observed at the surface which might be attributed to Si vacancy-enhanced diffusion. An accumulation peak is also observed after annealing at 0.29 9m, depth corresponding to the amorphous/crystalline interface that was determined on the as-implanted samples by Rutherford Backscattering Spectroscopy in channeling mode. The redistribution of the dopants has an impact on their electrical activation. A lower sheet resistance (Rsh= 8 k) is obtained for samples annealed without capping than for samples annealed with C capping (Rsh= 15 k ).

Info:

Periodical:

Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall

Pages:

611-614

DOI:

10.4028/www.scientific.net/MSF.556-557.611

Citation:

E. Oliviero et al., "Use of Graphite Cap to Reduce Unwanted Post-Implantation Annealing Effects in SiC ", Materials Science Forum, Vols. 556-557, pp. 611-614, 2007

Online since:

September 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.