Growth and Properties of Gadolinium Oxide Dielectric Layers on Silicon Carbide for High-K Application


Article Preview

We investigated the growth, interface formation as well as the structural and electrical properties of crystalline gadolinium oxide (Gd2O3) directly grown on 6H-SiC(0001) substrates by molecular beam epitaxy. The Gd2O3 layers were found to grow epitaxially resulting in the formation of flat (111) oriented layers with the cubic bixbyite type of structure. X-ray photoelectron spectroscopy measurements reveal a silicate-like Gd2O3/SiC interface. Furthermore, conduction and valence band discontinuities at the Gd2O3/6H-SiC interface were estimated with 1.9 eV and 1.2 eV, respectively. The fabricated capacitors exhibit suitable dielectric properties at room temperature; such as a dielectric constant of ε = 22, a leakage current of 10-8 A/cm2@1V and breakdown fields > 4.3 MV/cm for layers with 14 nm thickness. The CV measurements exhibit only small negative flat band shifts and a very small hysteresis, resulting from fixed charges or interface trap levels in the range of 1x1012 cm-2. These properties make Gd2O3 suitable for high-k application also for SiC.



Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall




A. Fissel et al., "Growth and Properties of Gadolinium Oxide Dielectric Layers on Silicon Carbide for High-K Application", Materials Science Forum, Vols. 556-557, pp. 655-658, 2007

Online since:

September 2007




[1] L.A. Lipkin and J.W. Palmour: IEEE Trans. Electron Dev. Vol. 46 (1999), p.525.

[2] V.V. Afanas'ev, A. Stesmans, F. Chen, S.A. Champbell and R. Smith: Appl. Phys. Lett. Vol. 82 (2003), p.922.

[3] N.G. Wright, K.V. Vassilevski, A.B. Horsfall and C.M. Johnson: Mater. Sci. Forum Vol. 457460 (2004), p.1433.

[4] K.Y. Gao, Th. Seyller, L. Ley, F. Ciobanu, G. Pensl, A. Tadich, J.D. Riley and R.G.C. Leckey: Appl. Phys. Lett. Vol. 83 (2003), p.1830.


[5] A. Perez-Tomas, P. Godignon, J. Montserrat, J. Millan, N. Mestres, P. Vennegues and J. Stoemenos: J. Electroch. Soc. Vol. 152 (2005), p. G259.

[6] R. Mahapatra, N. Poolamai, S. Chattopadhyay, N.G. Wright, A.K. Chakraborty, K.S. Coleman, P.G. Coleman and C.P. Burrows: Appl. Phys. Lett. Vol. 88 (2006), pp.072910-1.


[7] A. Fissel, M. Czernohorsky and H.J. Osten: J. Vac. Sci. Technol. B Vol. 24 (2006), p.2115; Superlattice and Microstructures Vol. 41 (2006), in press.

[8] M. Czernohorsky, E. Bugiel, H.J. Osten, A. Fissel and O. Kirfel: Appl. Phys. Lett. Vol. 88 (2006) pp.152905-1.

[9] A. Fissel, Phys. Rep. Vol. 379 (2003), p.149.

[10] L. Simon, J.L. Bischoff and L. Kubler, Phys. Rev. B Vol. 16 (1999), p.11653.

[11] A. Fissel, D. Kühne, E. Bugiel and H.J. Osten, J. Vac. Sci. Technol. B Vol. 24 (2006), p. (2041).

[12] A. Laha, E. Bugiel, H.J. Osten and A. Fissel: Appl. Phys. Lett. Vol. 88 (2006), pp.172107-1.

[13] J. Lu and Y. Kuo: Appl. Phys. Lett. Vol. 87 (2005), pp.232906-1.