Effects of Very High Neutron Fluence Irradiation on p+n Junction 4H-SiC Diodes

Abstract:

Article Preview

In this work we analyzed the radiation hardness of SiC p+n diodes after very high 1 MeV neutron fluence. The diode structure is based on a p+ emitter ion implanted in n-type epilayer with thickness equal to 5 %m and donor doping ND = 3×1015 cm-3. Before irradiation, the average leakage current density at 100 V reverse bias was of the order of 3 nA/cm2. These devices were irradiated at four different fluence values, logarithmically distributed in the range 1014-1016 (1 MeV) neutrons/cm2. After irradiation the epilayer material became more resistive, as indicated by the reduction of the forward and reverse current density at a given voltage. In particular, after a neutron fluence of 1×1014 n/cm2 the epilayer active doping concentration decreased to 1.5×1015 cm-3. After irradiation at 1016 n/cm2, i.e. the highest fluence value, the average leakage current density at 100 V reverse bias decreased to values of the order of 0.1 nA/cm2. This very low noise even after very high fluence is very important to obtain a high signal to noise ratio even at room temperature.

Info:

Periodical:

Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall

Pages:

917-920

Citation:

F. Moscatelli et al., "Effects of Very High Neutron Fluence Irradiation on p+n Junction 4H-SiC Diodes", Materials Science Forum, Vols. 556-557, pp. 917-920, 2007

Online since:

September 2007

Export:

Price:

$38.00

[1] F. Nava et al.: IEEE Transactions on Nuclear Science Vol. 51 No. 1 (2004).

[2] M. Bruzzi et al.: Diamond Relat. Mater. Vol. 10 (2001), p.657.

[3] F. Nava et. al.: Nuclear Instruments and Methods in Physics Research A Vol. 510 (2003), p.273.

[4] F. H. Ruddy, A. R. Dulloo, J. G. Seidel, M. K. Das, S. Ryu and A. K. Agarwal: Nuclear Science Symposium Conference Record, 2004 IEEE Vol. 7 (2004), p.4575.

[5] F. Nava, et al.: Nucl. Instrum. Meth. Phys. Res. Vol. A 514 (2003), p.126.

[6] K.K. Lee et al.: Nucl. Instrum. Meth. Phys. Res. Vol. B 210 (2003), p.489.

[7] W. Cunningham et al.: Nucl. Instrum. Meth. Phys. Res. Vol. A 509 (2003), p.127.

[8] F. Moscatelli, A. Scorzoni, A. Poggi, M. Bruzzi, S. Sciortino, S. Lagomarsino, G. Wagner, I. Mandic and R. Nipoti: IEEE Transaction on Nuclear Science Vol. 53 No. 3 (2006), p.1557.

DOI: https://doi.org/10.1109/tns.2006.872202

[9] A. Castaldini et al.: Applied Phys. Letters Vol. 85 (17) (2004), p.3780.

[10] A. Castaldini, A. Cavallini, L. Rigutti, F. Nava, S. Ferrero and F. Giorgis: Journal of Applied Phys. Vol. 98 (2005), p.053706.

[11] A. A. Lebedev et al.: Journal of Applied Phys. Vol. 88 (11) (2000) p.6265.

[12] X.D. Chen et al.: Journal of Applied Phys. Vol. 94 (5) (2003), p.3004.

[13] A. Cavallini et al.: Mater. Res. Soc. Symp. Proc. Vol. 911 (2006), p. B06-1/B06.

[14] T. Dalibor, G. Pensl , H. Matsunami , T. Kimoto,W. J. Choyke , A. Schoner , and N. Nordell: Phys. Stat. Sol. (a) Vol. 162 (1997), p.199.

DOI: https://doi.org/10.1002/1521-396x(199707)162:1<199::aid-pssa199>3.0.co;2-0

Fetching data from Crossref.
This may take some time to load.