Phase-Field Simulation of Cooperative Growth of Pearlite

Abstract:

Article Preview

Cooperative growth of pearlite is simulated for eutectoid steel using the multi-phase field method. This allows to take into account diffusion of carbon not only in γ phase, but also in α phase. The lamellar spacing and growth velocity are estimated for different undercoolings and compared with experimental results from literature and theoretical results from analytical models. It is predicted, that diffusion in ferrite and growth of cementite from the ferrite increase the kinetics of pearlitic transformation by a factor of four as compared to growth from austenite only, which is assumed by the classical Zener-Hillert model. Further on the effect of stress due to inhomogeneous carbon distribution in austenite and due to transformation strain is discussed shortly.

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

1013-1020

Citation:

K. Nakajima et al., "Phase-Field Simulation of Cooperative Growth of Pearlite", Materials Science Forum, Vols. 558-559, pp. 1013-1020, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] C. Zener, Trans. AIME, vol. 167 (1947) p.550.

[2] M. Hillert, Jernkont. Ann. 141 (1957) pp.757-789.

[3] K.A. Jackson, J.D. Hunt: Transactions of the Metallurgical Society of AIME (1966) vol. 236, pp.1129-42.

[4] L. Onsager, Discussion. Cornell Conference on Solid State. Aug. (1948) as cited in.

[2] .

[5] J.C. Fisher, Thermodynamics in Physical Metallurgy. ASM, Cleveland (1950) pp.201-241.

[6] R.F. Mehl, W.C. Hagel, Progress in Metal Physics, 6, London (1956) p.74.

[7] M. Hillert, Metall. Trans., (1972) vol. 3, pp.2729-41.

[8] K. Nakajima, M. Apel, I. Steinbach: Acta Materialia 54 (2006) pp.3665-3672.

[9] I. Steinbach, F. Pezzolla, B. Nestler, M. Seesselberg, R. Prieler, G.J. Schmitz and J.L.L. Rezende, Physica D (1996) vol. 94, pp.135-147.

DOI: https://doi.org/10.1016/0167-2789(95)00298-7

[10] J. Tiaden, B. Nestler, H.J. Diepers, I. Steinbach, Physica D (1998) vol. 115, pp.73-86.

[11] J. Eiken, B. Böttger, I. Steinbach, Phys. Ref. E (2006) pp.066122-1: 9.

[12] I. Steinbach, M. Apel, Physica D 217 (2006) pp.153-160.

[13] www. micress. de.

[14] K. Kassner, C. Misbah, R. Baumann, Phy Rev. E51 (1995) pp.2751-2753.

[15] N. Ridley, Phase Transformations in Ferrous Alloys, ed. by A.R. Marder and J.I. Goldstein, TMS AIME (1984) pp.201-236.

[16] D. Brown and N. Ridley, J. Iron Steel Inst. (1969) vol. 207, pp.1232-40.

[17] D. Cheetham and N. Ridley, J. Iron Steel Inst. (1973) vol. 211, pp.648-652.

[18] G.F. Bolling and R.H. Richman, Metall. Trans. (1970) vol. 1, pp.2095-2104.

[19] J.J. Kramer, G.M. Pound and R.F. Mehl, Acta. Metall. (1958) vol. 6, pp.763-771.

[20] J.H. Frye, E.E. Stansbury and D.L. McElroy, Trans. AIME (1942) vol. 150, pp.185-207.

[21] J.D. Verhoeven, D.D. Pearson, Metall. Trans. A (1984) vol 15, pp.1047-1054.