Prediction of the Microstructural Evolution during Hot Strip Rolling of Nb Microalloyed Steels

Abstract:

Article Preview

A physically based model is used to describe the microstructural evolution of Nb microalloyed steels during hot rolling. The model is based on a physical description of dislocation density evolution, where the generation and recovery of dislocations determines the flow stress and also the driving force for recrystallization. In the model, abnormally growing subgrains are assumed to be the nuclei of recrystallized grains and recrystallization starts when the subgrains reach a critical size and configuration. The model is used to predict the flow stress during rolling in SSAB Tunnplåt’s hot strip mill. The predicted flow stress in each stand was compared to the stresses calculated by a friction-hill roll-force model. Good fit is obtained between the predicted values by the microstructure model and the measured mill data, with an agreement generally within the interval ±15%.

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

1127-1132

DOI:

10.4028/www.scientific.net/MSF.558-559.1127

Citation:

L. Lissel and G. Engberg, "Prediction of the Microstructural Evolution during Hot Strip Rolling of Nb Microalloyed Steels", Materials Science Forum, Vols. 558-559, pp. 1127-1132, 2007

Online since:

October 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.