Prediction of the Microstructural Evolution during Hot Strip Rolling of Nb Microalloyed Steels


Article Preview

A physically based model is used to describe the microstructural evolution of Nb microalloyed steels during hot rolling. The model is based on a physical description of dislocation density evolution, where the generation and recovery of dislocations determines the flow stress and also the driving force for recrystallization. In the model, abnormally growing subgrains are assumed to be the nuclei of recrystallized grains and recrystallization starts when the subgrains reach a critical size and configuration. The model is used to predict the flow stress during rolling in SSAB Tunnplåt’s hot strip mill. The predicted flow stress in each stand was compared to the stresses calculated by a friction-hill roll-force model. Good fit is obtained between the predicted values by the microstructure model and the measured mill data, with an agreement generally within the interval ±15%.



Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara




L. Lissel and G. Engberg, "Prediction of the Microstructural Evolution during Hot Strip Rolling of Nb Microalloyed Steels", Materials Science Forum, Vols. 558-559, pp. 1127-1132, 2007

Online since:

October 2007




[1] F.J. Siciliano and J.J. Jonas, Metall. Mater. Trans. A, Vol. 31A (2000), p.511.

[2] I. Weiss and J.J. Jonas, Metall. Trans. A, Vol. 10A (1979), p.831.

[3] P.D. Hodgson, Mater. Forum, Vol. 17 (1993), p.403.

[4] M.G. Akben, T. Chandra, P. Plassiard and J.J. Jonas, Acta Metall., Vol. 32 (1984), p.591.

[5] J.J. Jonas, International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals. THERMEC-88. Vol. 1, Tokyo, Japan, 1988, p.59.

[6] B. Dutta and C.M. Sellars, Mater. Sci. Technol., Vol. 3 (1987), p.197.

[7] L.M. Brown and R.K. Ham, Dislocation-Particle Interactions, Elsevier Publishing Co., Ltd., Barking, Essex, England, 1971, p.9.

[8] J.O. Andersson, T. Helander, L. Hoglund, P. Shi and B. Sundman, Calphad (UK), Vol. 26 (2002), p.273.

[9] B. Leden, Scand. J. Metall, Vol. 15 (1986), p.215.

[10] A. Laasraoui and J.J. Jonas, Metall. Trans. A, Vol. 22A (1991), p.151.

[11] V.B. Ginzburg and R. Ballas, Flat Rolling Fundamentals, Iron and Steel Society/AIME, 186 Thorn Hill Road, Warrendale, PA 15086-7528, USA, 2000, p.267.

[12] G. Engberg, Stål 2004, Borlänge, Sweden, 5-6 may 2004, 2004, p.138.

[13] T. Siwecki and G. Engberg, Thermo-Mechanical Processing in Theory, Modelling & Practice [TMP] exp 2, 1997, p.121.

[14] G. Engberg and L. Lissel, Submitted to Steel Research International.

[15] L. Lissel, Licentiate thesis, Royal Institute of Technology, Stockholm, Sweden, (2006).

[16] Y. Bergström, The plastic deformation of metals - a dislocation model and its applicability, Div. of Physical Metallurgy, Royal Institute of Technology, Stockholm, (1983).

[17] R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen and A.D. Rollett, Mater. Sci. Eng. A, Vol. 238 (1997), p.219.


[18] F.J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, Elsevier Science Ltd , The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK, (2004).

[19] X. Wang, T. Siwecki and G. Engberg, THERMEC 2003 (Part 5): International Conference on Processing & Manufacturing of Advanced Materials, 2003, p.3801.

[20] F.J. Humphreys, Acta Mater., Vol. 45 (1997), p.4231.

[21] K. Lücke and H.P. Stüwe, Recovery and Recrystallization of Metals Aime, 1966, p.171.

[22] C.M. Sellars, Thermo-Mechanical Processing in Theory, Modelling & Practice [TMP] exp 2, 1997, p.35.

[23] R. Abad, A.I. Fernandez, B. Lopez and J.M. Rodriguez-Ibabe, ISIJ Int., Vol. 41 (2001), p.1373.