A New Approach to Model Heterogonous Recrystallization Kinetics Based on the Natural Inhomogeneity of Deformation

Abstract:

Article Preview

The classical JMAK equation was modified by combination with distribution density of the rate parameter k, which was deduced from a normal distribution of local strain. The modified equation is able to calculate the JMAK plots and the average Avrami exponent to characterize the entire heterogeneous recrystallization process. This new extension can successfully describe the relevant experimental observations, such as a smaller exponent than the basic JMAK theory predicts, and a decreasing slope of JMAK plots with the proceeding recrystallization. Moreover, it reveals that the Avrami exponent observed experimentally should significantly decrease with the increasing standard deviation of local strain distribution. In addition, it has a great potential to explain why most of experimentally observed values of Avrami exponents are less than 2 and why the Avrami exponent is insensitive to temperature and deformation conditions when the real standard deviation of local strain distribution in deformed metals is known.

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

1139-1144

Citation:

H. W. Luo et al., "A New Approach to Model Heterogonous Recrystallization Kinetics Based on the Natural Inhomogeneity of Deformation", Materials Science Forum, Vols. 558-559, pp. 1139-1144, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] F. J. Humphreys and M. Hatherly: Recrystallization and related annealing phenomena, Elsevier Science Ltd. (1995), Oxford OX5 1GB, UK, pp.16-17, 188-204.

[2] L. P. Karjalainen, T. A. Maccagno, J. J. Jonas: ISIJ International, Vol. 35(1995), p.1523.

[3] L. P. Karjalainen, J. Perttula: ISIJ International, Vol. 36(1996), p.729.

[4] A. Laasoraoui, J. J. Jonas: Metall. Trans. A, , Vol. 22A(1991), p.151.

[5] W.P. Sun, E. B. Hawbolt. ISIJ International, Vol. 37(1997), p.1000.

[6] S. F. Medina, A. Quispe. ISIJ International, , Vol. 41( 2001), p.774.

[7] R.A. Vandermeer, R. A. Rath: Metall. Mater. Trans. A, Vol. 20A(1989), P. 391.

[8] H.W. Luo, J. Sietsma and S. van der Zwaag. ISIJ International, Vol. 44(2004), p. (1931).

[9] A.D. Rollett, D.J. Srolovitz, R. D. Doherty and M. P. Anderson. Acta Metall. Vol. 37(1989), p.627.

[10] V. Sessa, M. Fanfoni, M. Tomellini. Physical Review B, Vol. 54(1996), p.836.

[11] R. Colas and C.M. Sellars: J. Testing and Evaluation, vol. 15(1987), pp.342-349.

[12] P. H. Shipway and H.K.D. H Bhadeshia: Mater. Sci. Techno., Vol. 11(1995), p.1116.

[13] A. Smith, A. Miroux, J. Sietsma, S. van der Zwaag. Steel Research Int., Vol. 77(2006), p.595.

[14] D.J. Srolovitz, G.S. Grest, M.P. Anderson, A.D. Rollett. Actal Metall., Vol. 36(1988), p.2115.

[15] B. Radhakrishnan, G. B. Sarma and T. Zacharia. Acta Mater., Vol. 46 (1998), p.4415.

[16] J. T. Michalak, W. R. Hibbard: Trans. Am. Soc. Metals, Vol. 53(1961), p.331.

0. 5.

[1] 1. 5.

[2] 2. 5.

[3] 3. 5 0 0. 01 0. 02 0. 03 0. 04 0. 05 0. 06 0. 07 0. 08 σσσσεεεε nav n =3, µε=0. 3 C1=50, 200, 400, 1000 N=4 N=5.