Modeling Recrystallization of Aluminum Alloys: A Refined Approach to Particle Stimulated Nucleation


Article Preview

A refined view of particle stimulated nucleation of recrystallization is presented, which utilizes a combination of advanced modeling tools. FEM simulations were carried out in order to model the evolution of the deformation zone around particles for various particle sizes and shapes. The results of these simulations were complemented by EBSD measurements to determine the number and orientation of nuclei. Finally, this information on particle stimulated nucleation was incorporated into a 3D cellular automaton recrystallization model CORe to model microstructure evolution. From these simulations the dependence of grain size and texture on particles size and shape was derived.



Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara




C. Schäfer and G. Gottstein, "Modeling Recrystallization of Aluminum Alloys: A Refined Approach to Particle Stimulated Nucleation", Materials Science Forum, Vols. 558-559, pp. 1169-1175, 2007

Online since:

October 2007




[1] P. L. Morris and B. J. Duggan: Metal Science Vol. 12 (1978), p.1.

[2] H. M. Chan and F. J. Humphreys: Acta Metall. Vol. 32 (1984), p.235.

[3] N. Hansen and B. Bay: Acta Metall. Vol. 29 (1980), p.65.

[4] F. J. Humphreys and M. Hatherly: Recrystallisation and related annealing phenomena (Elsevier, Oxford 1995).

[5] F. J. Humphreys: Metal Science Vol. 13 (1979), p.136.

[6] M. Somerday and F. J. Humphreys: Mater. Sci. Forum Vol. 331-337 (2000), p.703.

[7] R. D. Doherty and J. W. Martin: J. Inst. Metals Vol. 91 (1962), p.332.

[8] F. J. Humphreys, M. Ferry, C. Johnson, and P. Paillard, in: Microstructural and Crystallographic Aspects of Recrystallization, edited by N. Hansen, D. J. Jensen, Y. Liu, and B. Ralph, 16th of RisØ International Symposium on Material Science, p.87, RisØ National Laboratory, Roskilde, Denmark (1995).

[9] F. J. Humphreys and M. G. Ardakani: Acta Metall. Mater. Vol. 42 (1994), p.749.

[10] O. Engler, X. W. Kong, and K. Lücke: Acta Mater. Vol. 49 (2001), p.1701.

[11] O. Engler, P. Yang, and X. W. Kong: Acta Mater. Vol. 44 (1996), p.3349.

[12] P. Mukhopadhyay, doctoral thesis, RWTH Aachen, (2006).

[13] P. Mukhopadhyay, M. Loeck, and G. Gottstein: accepted for publication in Acta Mater. (2006).

[14] C. Schäfer and G. Gottstein: to be published.

[15] F. J. Humphreys: Acta Metall. Vol. 25 (1977), p.1323.

[16] E. Nembach: Particle Strengthening of Metals and Alloys (Wiley, New York 1996).

[17] B. Fruhstorfer, V. Mohles, R. Reichelt, and E. Nembach: Philosophical Magazine A Vol. 82 (2002), p.2575.

DOI: 10.1080/01418610210146050

[18] G. Gottstein: Physical Foundations of Material Science (Springer Verlag, Berlin 2004).

[19] M. Crumbach, doctoral thesis, RWTH Aachen, (2005).

[20] C. Schäfer, M. Crumbach, and G. Gottstein: submitted to Mater. Sci. Forum (2006).

[21] M. Crumbach, M. Goerdeler, and G. Gottstein: Mater. Sci. Forum Vol. 467-470 (2004), p.617.

Fetching data from Crossref.
This may take some time to load.