Phase-Field Modeling and Simulation of Nucleation and Growth of Recrystallized Grains

Abstract:

Article Preview

The novel coupling recrystallization model is proposed in this study. First, the deformation microstructure was simulated by the finite element method based on the strain gradient crystal plasticity theory. The calculated dislocation density and crystal orientation were transferred to the recrystallization phase-field simulation. The initial subgrain structures used in phase-field simulation were determined by a relationship between dislocation density and subgrain size with the dislocation density distribution calculated by crystal plasticity simulation. The so-called KWC phase-field model, which can introduce both subgrain rotation and grain boundary migration, was employed, and spontaneous nucleation and grain growth were simulated simultaneously.

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

1195-1200

DOI:

10.4028/www.scientific.net/MSF.558-559.1195

Citation:

T. Takaki et al., "Phase-Field Modeling and Simulation of Nucleation and Growth of Recrystallized Grains", Materials Science Forum, Vols. 558-559, pp. 1195-1200, 2007

Online since:

October 2007

Export:

Price:

$35.00

[1] D. Raabe: Computational Materials Science (Federal Republic of Germany 1998).

[2] D. J. Srolovitz, G. S. Grest and M. P. Anderson: Acta metal. Vol. 34-9 (1986), p.1833.

[3] H. W. Hesselbarth and I. R. Gobel: Acta Metall. Mater., Vol. 39-9 (1991), p.2135.

[4] M. A. Miodownik: J. Light Metals Vol. 2-3 (2002), p.125.

[5] D. Raabe: Acta Mater. 48 (2000), p.1617.

[6] A. D. Rollet and D. Raabe: Comp. Mate. Sci. 21 (2001), p.69.

[7] R. Kobayashi: Physica D Vol. 63 (1993), p.410.

[8] R. Kobayashi, J. A. Warren and W. C. Carter: Physica D Vol. 140 (2000), p.141.

[9] L. -Q. Chen and W. Yang: Phy. Rev. B Vol. 50-21 (1994), p.15752.

[10] I. Steinbach, et al.: Physica D Vol. 94-3 (1996), p.135.

[11] R. Kobayashi and Y. Giga, J. Statistical Physics Vol. 95 (1999), p.1187.

[12] F. J. Humphreys and M. Hatherly: Recrystallization and related annealing phenomena (Elsevier 2004).

[13] F. J. Humphreys: Materials Science Forum Vols. 467-470 (2004) p.107.

[14] J. C. M. Li: J. Appl. Phys.: Vol. 33-10 (1962), p.2958.

[15] F. J. Humphreys and H. M. Chan: Mater. Sci. Technol. Vol. 12 (1996), p.143.

[16] U. Erb and H. Gleiter: Scr. Mettall. Vol. 13 (1979), p.61.

[17] G. Herrmann, H. Gleiter and G. Bäro: Acta Metall. Vol. 24 (1976), p.353.

[18] S. -W. Chan and R. W. Balluffi: Acta Metall. Vol. 33-6 (1985), p.1113.

[19] S. -W. Chan and R. W. Balluffi: Acta Metall. Vol. 34-11 (1986), p.2191.

[20] K. E. Harris, V. V. Singh and A. H. King: Acta Mater. Vol. 46-8 (1998), p.2623.

[21] A. J. Haslam, et al.: Mate. Sci. Eng. A318 (2001), p.293.

[22] D. Moldovan, et al.: Acta Mate. Vol. 50 (2002), p.3397.

[23] A. J. Haslam, et al.: Comp. Mate. Sci. Vol. 23 (2002), p.15.

[24] A. E. Lobkovsky and J. A. Warren: Phys. Rev. E Vol. 63 (2001), p.051605.

[25] Y. Higa, Y. Sawada and Y. Tomita: Trans. JSME A69 (2003), p.523 (in Japanese).

[26] N. Xiao, et al.: Acta Mater. Vol. 54 (2006), p.1265.

[27] D. Raabe: Comp. Mate. Sci. Vol. 19 (2000), p.13.

[28] Y. J. Lan et al.: Acta Mater. Vol. 53 (2005), p.991.

[29] T. Takaki, et al.: Proc. PLASTICITY'06 (2006), p.469.

[30] T. Takaki, et al.: Proc. MMM (2006), p.562.

[31] J. A. Warren, et al.: Acta Mater. Vol. 51 (2003), p.6035.

[32] M. Upmanyu, et al.: Acta Mater. Vol. 54 (2006), p.1707.

In order to see related information, you need to Login.