Modeling Recrystallization for 3D Multi-Pass Forming Processes

Abstract:

Article Preview

The present work concerns the simulation of metallurgical evolutions in 3D multi-pass forming processes. In this context, the analyzed problem is twofold. One point refers to the management of the microstructure evolution during each pass or each inter-pass period and the other point concerns the management of the multi-pass aspects (different grain categories, data structure). In this framework, a model is developed and deals with both aspects. The model considers the microstructure as a composite made of a given (discretized) number of phases which have their own specific properties. The grain size distribution and the recrystallized volume fraction distribution of the different phases evolve continuously during a pass or inter-pass period. With this approach it is possible to deal with the heterogeneity of the microstructure and its evolution in multi-pass conditions. Both dynamic and static recrystallization phenomena are taken into account, with typical Avrami-type equations. The present model is implemented in the Finite Element code FORGE2005®. 3D numerical simulation results for a multi-pass process are presented.

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

1201-1206

DOI:

10.4028/www.scientific.net/MSF.558-559.1201

Citation:

M. Teodorescu et al., "Modeling Recrystallization for 3D Multi-Pass Forming Processes", Materials Science Forum, Vols. 558-559, pp. 1201-1206, 2007

Online since:

October 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.