Coupled Simulation of the Static Recrystallization in Hot Deformed Austenite on Mesoscale

Abstract:

Article Preview

The kinetics and microstructure evolution during static recrystallization (SRX) of hot-deformed austenite in a low carbon steel are simulated by coupling a cellular automaton (CA) model with a crystal plasticity finite element model (CPFEM). The initial deformed characteristics, which include the stored energy of deformation and the crystallographic orientation induced by a plane strain hot compression are simulated using a crystal plasticity finite element model. These data are mapped onto the CA regular lattices as the initial parameters for SRX simulation. The coupled simulation results reveal that the heterogeneous distribution of the stored energy of deformation results in non-uniform nucleation and a slower kinetics. The influence of non-uniform distribution in stored energy on the SRX kinetics and microstructure evolution is discussed based on a microstructural path (MP) analysis.

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

1213-1218

Citation:

C. W. Zheng et al., "Coupled Simulation of the Static Recrystallization in Hot Deformed Austenite on Mesoscale", Materials Science Forum, Vols. 558-559, pp. 1213-1218, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] D. Raabe: Computational Material Science (Wiley-VCH, Weinheim, 1998).

[2] H.W. Hesselbarth and I. R. Göbel: Acta Metall Mater, Vol. 39 (1991), p.2135.

[3] R. Dewri and N. Chakraborti: Model Simul Mater Sci Eng, Vol. 13 (2005), p.173.

[4] P.R. Riso, J.J. SCarvalho, T.C. Salazar, F.V.L. Paula, and J.A. Castro: Mater Sci Forum, Vols. 467-470 (2004), p.659.

[5] V. Marx, F.R. Reher and G. Gottstein: Acta Mater, Vol. 147 (1999), p.1219.

[6] R.L. Goetz and V. Seetharaman: Metall Mater Trans A, Vol. 29A(1997), p.2307.

[7] F.J. Humphreys and M. Hatherly. Recrystallization and Related Annealing Phenomena (Pergamon Press, Oxford, 1995).

[8] G.B. Sarma, B. Radhakrishnan and T. Zacharia: Comput Mater Sci, Vol. 46 (1998), p.4415.

[9] N.M. Xiao, Z.F. Yue, Y.J. Lan, M.M. Tong and D.Z. Li: Acta Metall Sin, Vol. 41 (2005), p.496.

[10] A. Yoshie, T. Fujita, M. Fujioka, K. Okamoto and H. Mroikawa: ISIJ Int, Vol. 36 (1996), p.467.

[11] C.W. Zheng, Y.J. Lan, N.M. Xiao, D.Z. Li and Y.Y. Li: Acta Metall Sin, Vol. 42 (2006), p.474.

[12] R.A. Vandermeer: Acta Mater, Vol. 53 (2005), p.1449.

[13] P. R. Rios et al: Mater Res, Vol. 9 (2003), p.165.

Fetching data from Crossref.
This may take some time to load.