Crystallographic Texture in Low Alloy TRIP Steel

Abstract:

Article Preview

Low alloy transformation induced plasticity (TRIP) steels have a complex microstructure consisting of ferrite, bainite and retained austenite. Their excellent mechanical properties are ascribed to the martensitic transformation of retained austenite during plastic deformation. In the present contribution, the crystallographic texture of fcc and bcc phases in TRIP steels was measured by means of orientation mapping. The austenite texture was close to a typical rolling texture of fcc metals. For bcc phase, the effects of orientation and grain size on the distribution of pattern quality were investigated. The texture of transformation product phase was separated by grain size. The transformation texture showed stronger α fiber including {113}<110> component than the recrystallization texture. It showed a good agreement with a transformation texture predicted by Kurdjmov-Sachs (KS) relationship without any variant selection.

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

1423-1428

DOI:

10.4028/www.scientific.net/MSF.558-559.1423

Citation:

S. J. Park et al., "Crystallographic Texture in Low Alloy TRIP Steel", Materials Science Forum, Vols. 558-559, pp. 1423-1428, 2007

Online since:

October 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.