Role of Heavy Deformation in Thermomechanical Processing on the Formation of Ultrafine-Grained Structure in Steels


Article Preview

The formation of ultrafine-grained structure in steels by various thermomechanical processings is reviewed from a metallurgical point of view. In the recent new type TMCP, ultrafine ferrite grains with a grain size of about 1μm are obtained when the austenite is heavily deformed at lower temperatures. In this case, dynamic phenomena such as dynamic recrystallization become prominent in the process. In the aging after heavy cold rolling of supersaturated matrix phase in two-phase alloys, the competition between the recovery or recrystallization of matrix phase and the precipitation of second phase occurs, resulting in various types of two-phase structures including microduplex structure. Microduplex structure is also obtained by annealing after heavy cold rolling of coarse two-phase structure in duplex stainless steel and high carbon steel. Recently, various severe plastic deformation processings, in which very large plastic strain over 4 is applied to the materials, have been developed to produce ultrafine grained materials with nanocrystalline and/or submicrocrystalline structures.



Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara




T. Maki, "Role of Heavy Deformation in Thermomechanical Processing on the Formation of Ultrafine-Grained Structure in Steels", Materials Science Forum, Vols. 558-559, pp. 23-31, 2007

Online since:

October 2007





[1] Thermomechanical Processing of High Strength Low Alloy Steels, ed. by I. Tamura et al., Butterworths, (1988).

[2] Proc. of 1st Int. Conf. on Advanced Structural Steels (ICASS 2002), Tsukuba, NIMS, (2002).

[3] M. Niikura, M. Fujioka, Y. Adachi, A. Matsukura, T. Yokota, Y. Shirota and Y. J. Hagiwara: Mater Processing Tech, Vol. 117 (2001), p.341.

[4] M. Niikura, Y. Hagiwara, K. Nagai, K. Tsuzaki and S. Takaki: Proc. of Int. Symp. on Ultrafine Grained Steels (ISUGS 2001), ISIJ, Fukuoka, Japan, 2001, p.26.

[5] T. Maki: Proc. of 3rd Int. Conf. on Advanced Structural Steels (ICASS 2006), Gyeongju, Korea, 2006, p.68.

[6] I. Salvatori, T. Inoue and K. Nagai: ISIJ Int., Vol. 42 (2002), p.744.

[7] N. Tsuji, Y. Matsubara, Y. Saito and T. Maki: J. of Jpn. Inst. Metals, Vol. 62 (1998), p.967.

[8] T. Torizuka: CAMP-ISIJ, Vol. 18 (2005), p.608.

[9] S.V.S. Narayana Murty, S. Torizuka, K. Nagai, N. Koseki and Y. Kogo: Scripta Mater., Vol. 52 (2005), p.713.

[10] T. Furuhara, T. Yamaguchi, S. Furimoto and T. Maki: Proc. Of THERMEC-2006, Vancouver, 2006, in press.

[11] R.C. Gibson, H.W. Hayden and J.H. Brophy: Trans Am Soc Met, Vol. 61 (1968), p.85.

[12] H.W. Hayden, R.C. Gibson, H.F. Merrick and J.H. Brophy: Trans Am Soc Met, Vol. 60 (1967), p.3.

[13] T. Maki, T. Furuhara and K. Tsuzaki: ISIJ Int., Vol. 41 (2001), p.571.

[14] T. Furuhara, Y. Mizuno and T. Maki: Mater Trans JIM, Vol. 40 (1999), p.815.

[15] T. Furuhara, K. Hikita and T. Maki: Mater Sci Forum, Vol. 304-306 (1999), p.53.

[16] T. Maki and T. Furuhara: Mater Sci Forum, Vol. 426-432 (2003), p.19.

[17] S. Tagashira, K. Sakai, T. Furuhara and T. Maki: ISIJ Int., Vol. 40 (2000), p.1149.

[18] M. Umemoto: Mater. Trans., Vol. 44 (2003), p. (1900).

[19] D.A. Hughes and N. Hansen: Acta Mater, Vol. 45 (1997), p.3871.