Recent Advances in the Simulation of Recrystallization and Grain Growth

Abstract:

Article Preview

Modeling and simulation of recrystallization, grain growth, and related phenomena are important tools for the fundamental understanding of microstructural evolution and prediction of engineering properties. In particular for ultra fine grained and nanocrystalline materials proper account of microstructural evolution is essential for the optimal processing of these materials. It is shown that for modeling of softening phenomena it is important to discriminate between discontinuous primary recrystallization and discontinuous grain growth owing to their quite different underlying physics. Recent developments in recrystallization modeling and simulation of grain growth are addressed, in particular nucleation of recrystallization and junction effects in grain growth. Major progress is also expected from atomistic modeling and quantum-mechanical computations for making available specific material properties.

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

3-12

Citation:

G. Gottstein et al., "Recent Advances in the Simulation of Recrystallization and Grain Growth", Materials Science Forum, Vols. 558-559, pp. 3-12, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] H. F Humphreys, M. Hatherly: Recrystallisation and related annealing phenomena (Elsevier, Oxford 1995).

[2] G. Gottstein: Physical Foundations of Materials Science (Springer Verlag, Berlin 2004).

[3] P.B. Pragnell, J.R. Bowen, M. Berta, P.J. Apos, P.S. Bate: Mater. Sci. Forum Vol. 467-470 (2004) 1261. 10 11 12 13 14 15 1 10 100 1100K QGBM = 0, 64 6 0, 04 eV mGBM(0) = 42270 [10 -8 m4 / Js] Σ 5.

[1] 53. 13° sym. tilt GB Doyama EAM with 3d per. BC, adjustable h33 box component and orien. -corr. DF 800K 900K 1000K mGB [10-8 m4 / Js] 1/kBT [1/eV].

[4] X. Molodova, A. Khorashadizadeh, G. Gottstein, M. Winning, R. Hellmig: submitted to International Journal of Materials Research (2006).

[5] P.J. Hurley, F.J. Humphreys: Acta Mater. Vol. 51 (2003), p.3779.

[6] G. Gottstein, in: Virtual Fabrication of Aluminium Products, edited by J. Hirsch, Wiley-VCH (2006) p.157.

[7] P. Mukhopadhyay, M. Loeck, G. Gottstein: Acta Mater. (2006, in press).

[8] D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, S. Zaefferer: Acta Mater. Vol. 49 (2001) p.3433.

[9] M. Crumbach, G. Pomana, P. Wagner, G. Gottstein, in Recrystallization and Grain Growth, edited by G. Gottstein and D.A. Molodov, Springer-Verlag Berlin, (2001), p.1053.

[10] M. Crumbach: Doctoral Thesis, RWTH Aachen, Der-Andere-Verlag Tönning, Germany (2005).

[11] P. Van Houtte, S. Li, O. Engler, in: Continuum scale simulation of engineering materials, edited by D. Raabe, F. Roters, F. Barlat, L.Q. Chen, Wiley-VCH (2004), p.448.

[12] F. Roters, D. Raabe, G. Gottstein: Acta Mater. Vol. 48 (2000), p.4181.

[13] M. Crumbach, M. Goerdeler, G. Gottstein: Acta Mater. Vol. 54 (2006), p.3275.

[14] M. Crumbach, M. Goerdeler, G. Gottstein: Acta Mater. Vol. 54 (2006), p.3291.

[15] L. Delannay: Ph. D. Thesis, KU Leuven, Belgium (2001).

[16] S. Zaefferer, T. Baudin, R. Penelle: Acta Mater. Vol. 49 (2001), p.1105.

[17] M. Seefeldt, L. Delannay, B. Peeters, E. Aernoudt, P. Van Houtte: Acta Mater. Vol. 49 (2001), p.2129.

[18] D. Raabe, Z. Zhao, W. Mao: Acta Mater. Vol. 50 (2002), p.4379.

[19] A. Duckham, O. Engler, R.D. Knutsen: Acta Mater. Vol. 50 (2002), p.2881.

[20] I.L. Dillamore, H. Katoh: Metal Sci. Vol. 8 (1974), p.73.

[21] G. Gottstein, L.S. Shvindlerman: Grain boundary migration in metals. (CRC Press, Boca Raton, USA) (1999).

[22] W.W. Mullins: J. Appl. Phys. Vol. 27 (1956), p.900.

[23] E.A. Holm, M.A. Miodownik, K.J. Healey, in: Recrystallization and Grain Growth, edited by B. Bacroix et al., Trans Techn. Publ. Zürich-Uetikon, Switzerland, (2004), p.611.

[24] C.E. Krill III, L. -Q. Chen: Acta Mater. Vol. 50 (2002), p.3059.

[25] C. Maurice, in: Recrystallization and Grain Growth, edited by G. Gottstein and D.A. Molodov, Springer-Verlag Berlin, (2001) p.123.

[26] D. Weygand, Y. Bréchet, J. Lépinoux, W. Gust: Phil. Mag. B Vol. 79 (1999), p, 703.

[27] L.A. Barrales, L.S. Shvindlerman, V. Mohles, G. Gottstein: these proceedings (2007).

[28] G. Gottstein and L.S. Shvindlerman: Scripta Mat., Vol. 54 (2006), p.1065.

[29] G. Gottstein, Y. Ma, L.S. Shvindlerman: Acta Mater., Vol. 53 (2005), p.1535.

[30] D. Mattissen, A. Wær∅, D.A. Molodov, L.S. Shvindlerman, G. Gottstein.: Journal of Microscopy, Vol. 213 (2004), p.257.

[31] M.P. Allen, D.J. Tildesley: Computer simulation of liquids (Clarendon Press, Oxford, 1990).

[32] G. Kresse, J. Hafner: J. Phys. Condensed Matter Vol. 6 (1994), p.8245.

[33] B. Schönfelder, G. Gottstein, L.S. Shvindlerman: Acta Mater. Vol. 53 (2005), p.1597.

[34] B. Schönfelder, G. Gottstein, L.S. Shvindlerman: Met. Trans. A Vol. 37A (2006), p.1757.