The Role of Zirconium Additions in Recrystallization of Aluminum Alloys


Article Preview

Control of grain size during recrystallization of aluminum alloys is critical when tailoring material properties for structural applications. Most commonly the grain size is controlled by adding alloying elements which form second phases during homogenization heat treatments small enough to impose a Zener drag on the grain boundary mobility. These phases are known as dispersoids and are in the 10 to 200 nm in diameter range. In Al-Zn alloys, zirconium has been successfully used in controlling the degree of recrystallization after solution heat treatments. It is commonly understood that the Al3Zr dispersoids of about 20 nm in diameter present in the microstructure are the key features affecting grain boundary mobility. With the success of controlling recrystallization in Al- Zn alloys, zirconium has been added to other alloy systems, such as Al-Cu-Mn, and a similar retarding effect in recrystallization kinetics has been observed as seen in the Al-Zn systems. However, in Al-Cu-Mn alloys, zirconium bearing dispersoids are not observable in the microstructure. Consequently, additional microstructural effects such as solute drag need to be considered to explain the experimental observations. In this paper, the role of zirconium additions in aluminum alloys will be summarized.



Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara




H. Weiland and S. W. Cheong, "The Role of Zirconium Additions in Recrystallization of Aluminum Alloys", Materials Science Forum, Vols. 558-559, pp. 383-387, 2007

Online since:

October 2007




[1] D. Altenpohl, Aluminium von Innen, Aluminium-Verlag, Dusseldorf, (1994).

[2] F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science Inc., Oxford, (1995).

[3] H. Weiland, Industrial Application of Recrystallization Control in Aluminum Products, Proc. 2nd Intl. Conf. on Recrystallization and Grain Growth, B. Bacroixet al, Materials Science Forum, 349-356, pp.997-1002 (2004).


[4] F.R. Boutin, Journal De Physique, colloque C4, supplement to No. 10, Vol. 36, October 1975, pp C4-355 to C4-365.

[5] In-Situ Quantification of the Effect of Solutes on Grain Boundary Mobility in Aluminum Alloys, Mitra Taheri, Anthony Rollett, Hasso Weiland, Proc. 2 nd Intl. Conf. on Recrystallization and Grain Growth, B. Bacroix et al, Materials Science Forum, 997-1002, pp.997-1002 (2004).


[6] Studies of the Effect of Solute Segregation on the Anisotropy, Mobility and Chemistry of Grain Boundaries: Direct In-Situ Observations from the Meso- to the Atomic Scale, Mitra L. Taheri et al, submitted for publication.