Effects of High Magnetic Field and Field Direction on Recrystallization and Recrystallization Texture in Cold-Rolled IF Steel Sheet

Abstract:

Article Preview

The effects of magnetic annealing on recrystallization and texture evolution in asannealed interstitial-free (IF) steel sheet were investigated by means of X-ray diffraction ODF analysis, SEM-EBSD analysis, and optical microstructure observation. During the magnetic annealing, specimens were placed at the center of the applied magnetic field, with their rolling planes parallel to the field direction (MD) and their rolling direction (RD) normal to the field direction (MD). It was found that the magnetic annealing retards the recrystallization process, but promotes the nucleation at the initial stage of recrystallization. Magnetic annealing did not change the mechanism of recrystallization texture evolution but improved the development of γ-fiber texture during the process of recrystallization, and the magnetically annealed specimen had stronger γ-fiber texture compared with the conventionally annealed specimen; this interesting finding is quite different from the previous work on magnetically annealed IF steel.

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

401-406

Citation:

Y. Wu et al., "Effects of High Magnetic Field and Field Direction on Recrystallization and Recrystallization Texture in Cold-Rolled IF Steel Sheet", Materials Science Forum, Vols. 558-559, pp. 401-406, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] H. Pender and R. L. Jones: Phys. Rev. Vol. 1 (1913), p.259.

[2] R. Smoluchowski and R. W. Turner: J. Appl. Phys. Vol. 20 (1949), p.745.

[3] V. S. Bhandary and B. D. Cullity: Trans. Metall. Soc. AIME Vol. 224 (1962), p.1194.

[4] H. O. Martikainen and V. K. Lindroos: Scand. J. Metall. Vol. 10 (1981), p.3.

[5] T. Watanabe, Y. Suzuki, S. Tani and H. Oikawa: Philo. Mag. Lett. Vol. 62(1) (1990), p.9.

[6] N. Masahashi, M. Matsuo and K. Watanabe: J. Mater. Res. Vol. 13 (1998), p.457.

[7] P. J. Konijnenberg, D. A. Molodov and G. Gottstein: Mater. Sci. Forum Vol. 467-470 (2004), p.763.

[8] H. Murakami and T. Senuma: ISIJ Int. Vol. 38 (1998), p.653.

[9] Y. Y. Tse and B. J. Duggan: Metall. Mater. Trans. Vol. 37A (2006), p.1055.

[10] C. S. He, Y. D. Zhang, X. Zhao, L. Zuo and J. C. He, K. Watanabe, T. Zhang and G. Nishijima: Adv. Eng. Mater. Vol. 5(8) (2003), p.579.

[11] C.S. He, Y.D. Zhang, X. Zhao, L. Zuo, C. Esling: Mater. Sci. Forum Vol. 495-497 (2005), p.465.

[12] L. G. Schulz: J. Appl. Phys. Vol. 20 (1949), p.1030.

[13] Z. D. Liang, J. Z. Xu and F. Wang, in: Three dimensional orientation analysis of textured materials-ODF analysis, Northeastern University of Technology Publishing, Shenyang (1986).

[14] F. S . Buffington, K. Hirano and M. Cohen: Acta Metall. Vol. 9 (1961), p.434.

[15] S. Nakamichi, S. Tsurekawa, Y. Morizono and T. Watanabe: J. Mater. Sci. Vol. 40(2005), p.3191.

[16] K. Kawahara, Y. Ando, K. Nogiwa, Y. Yagyu, S. Tsurekawa and T. Watanabe: Ann Chim Sci Mat Vol. 27 Suppl 1 (2002), p. S269.

[17] H. Takechi, H. Katoh and S. Nagashima: Trans. AIME Vol. 242 (1968), p.56.

[18] N. Rajmohan, Y. Hayakawa, J. A. Szpunar and J. H. Root: Acta Mater. Vol. 45 (1997), p.2485.

[19] M. Sánchez-Araiza, S. Godet, P. J. Jacques and J. J. Jonas: Acta Mater. Vol. 54 (2006), p.3085.

[20] S. Tsurekawa, K. Kawahara, K. Okamoto, T. Watanabe and R. Faulner: Mater. Sci. Eng. A Vol. 387-389 (2004), p.442.

Fetching data from Crossref.
This may take some time to load.