Annealing Behavior during Heating Rate of Ultrafine-Grained 5052 Al Alloy deformed at Cryogenic Temperature


Article Preview

The microstructural evolution during thermal annealing of a cryogenic rolled 5052 Al alloy was investigated. The activation energy for annealing behavior was calculated using DSC data. For the heating rate of 16°C/min, the precipitation occurred at the annealing temperature of 150~230°C due to Mg self diffusion, recovery occurred at the annealing temperature of 230~260°C, and recrystallization proceeded at a higher temperature up to about 370°C. Both recovery and recrystallization gave rise to non-uniform, bimodal grain-size distributions, which may result from heterogeneous nanostructures. In addition, the activation energy for the precipitation was found as ~115kJ/mol, indicating the process was diffusion-controlled (Mg in Al), and the activation energy for recovery was found to be ~140kJ/mol, representing self-diffusion in pure Al.



Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara




U. G. Gang et al., "Annealing Behavior during Heating Rate of Ultrafine-Grained 5052 Al Alloy deformed at Cryogenic Temperature", Materials Science Forum, Vols. 558-559, pp. 735-740, 2007

Online since:

October 2007




[1] F.J. Humphreys and M. Hatherly, In: Recrstallization and related annealing phenomena, Pergamon, Oxford, UK (1992).

[2] R.A. Vandermeer and P. Gordon, In: Recovery and recrystallization of metals, edited by L. Himmel, Interscience Publishers, New York, NY (1963), P. 211.

[3] T.R. Malow and C.C. Koch: Acta Mater Vol. 45 (1997), p.2177.

[4] J. Lee, F. Zhou, K.H. Chung, N.J. Kim and E.J. Lavernia: Metall Mater Trans A Vol. 32 (2001), p.3109.

[5] F. Zhou, J. Lee, S. Dallek and J. Lavernia: J Mater Res Vol. 16 (2001), p.3451.

[6] F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek and E.J. Lavernia: Acta Mater Vol. 51 (2003), P. 2777.

[7] H.E. Kissinger: Anal Chem Vol. 29 (1957), p.1702.

[8] L.C. Chen and F. J. Spaepen: Appl Phys Vol. 69 (1991), p.679.

[9] R.C. Picu and D. Zhang: Acta Materialia Vol. 52 (2004), p.161.

[10] S.I. Fujikawa and Takada Y: Defect Diff Forum Vol. 143 (1997), p.409.

[11] H.J. Frost and M.F. Ashby, In: Deformation-Mechanism Maps, Pergamon, Oxford, UK (1982).

[12] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Metall Mater Trans A Vol. 29(1998), p.2503.

[13] H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa and M. Nemoto: Mater Sci Eng A Vol. 265 (1999), p.188.

[14] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita and T.G. Langdon: Acta Mater Vol. 50 (2002), p.553.

[15] J. Wang , Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto and R.Z. Valiev: Acta Mater Vol. 44 (1996), p.2973.

[16] K. Oh-Ishi, Z. Horita, D.J. Smith and T.G. Langdon: J Mater Res Vol. 16 (2001), p.583.

[17] R.Z. Valiev: NanoStruct Mater Vol. 6 (1995), p.73.