Principles of Microstructural Design in Two-Phase Systems

Abstract:

Article Preview

When a polycrystal is in chemical equilibrium, the microstructure evolves as a result of grain growth under the capillary driving force arising from the interface curvature. As the growth rate of an individual grain is the product of the interface mobility and the driving force, the growth of the grain can be controlled by changing these two parameters. According to crystal growth theories, the growth of a crystal with a rough interface is governed by diffusion and its interface mobility is constant. In-contrast, the growth of a crystal with faceted interfaces is governed by the interface reaction and diffusion for driving forces below and above a critical value, respectively. As the growth rate is nonlinear for the regime of interface reaction control, the grain growth is nonstationary with annealing time. Calculations reveal that the types of nonstationary growth behavior including pseudo-normal, abnormal, and stationary are governed by the relative value of the maximum driving force, gmax, to the critical driving force for appreciable growth, gc. Recent experimental observations showing the effects of critical processing parameters on microstructural development also support the theoretical prediction. The principles of microstructural design are deduced in terms of the coupling effects of gmax and gc.

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

827-834

Citation:

S. J. L. Kang et al., "Principles of Microstructural Design in Two-Phase Systems", Materials Science Forum, Vols. 558-559, pp. 827-834, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids., Vol. 19 (1961), p.35.

[2] C. Wagner: Z. Elektrochem., Vol. 65 (1961), p.581.

[3] A.J. Ardell: Acta Metall., Vol. 20 (1972), p.61.

[4] A.D. Brailsford and P. Wynblatt: Acta Metall., Vol. 27 (1979), p.489.

[5] S.P. Marsh and M.E. Glicksman: Acta Mater., Vol. 44 (1996), p.3761.

[6] R. M. German and E.A. Olevsky: Metall. Mater. Trans. A, Vol. 29 (1998), p.3057.

[7] V.A. Snyder, J. Alkemper and P.W. Voorhees: Acta Mater., Vol. 48 (2000), p.2689.

[8] T. -K. Kang and D. N. Yoon: Metall. Trans. A, Vol. 9A (1978), p.433.

[9] D. D. Lee, S. -J. L. Kang and D. N. Yoon: J. Am. Ceram. Soc., Vol. 71 (1988) p.803.

[10] S. -J. L. Kang and S.M. Han: MRS Bull, Vol. 20 (1995) p.33.

[11] Y.J. Park, N.M. Hwang and D.Y. Yoon: Metall. Mater. Trans. A, Vol. 27 (1996) p.2809.

[12] N.M. Seabauch, I.H. Kersht and G.L. Messing: J. Am. Ceram. Soc., Vol. 80 (1997), p.1181.

[13] S. -K. Kwon, S. -H. Hong, D. -Y. Kim, N. M. Hwang: J. Am. Cram. Soc., Vol. 83 (2000), p.1247.

[14] H. Moon, Kim B-K and Kang S-JL: Acta Mater., Vol. 49 (2001), p.1293.

[15] M. Sommer, W.D. Schubert, E. Zobetz and P. Warvichler: Int. J. Refract. Met. Hard. Mater. Vol. 20 (2002), p.41.

[16] B. -K. Yoon, B. -A. Lee, S. -J. L. Kang: Acta Mater., Vol. 53 (2005), p.4677.

[17] W.K. Burton, N. Cabrera and F. C. Frank: Phil. Trans. Roy. Soc. London, A, Vo. 243 (1951), p.299.

[18] J. P. Hirth and G. M. Pound: Condensation and Evaporation, Pergamon Press, Oxford (1963), pp.77-148.

[19] S. D. Peteves and R. Abbaschian: Metall. Trans. A., Vol. 22A (1991), p.1271.

[20] S. -J. L. Kang: Sintering: Densification, Grain Growth and Microstructure (Elsevier, Oxford UK, 2005).

[21] Y. -I. Jung, D. Y. Yoon and S. -J. L. Kang: Mater. Sci. Forum, Vol. 534-536 (2007), p.567.

[22] Y. -I. Jung, D. Y. Yoon and S. -J. L. Kang: Acta Mater., Submitted for publication.

[23] J.M. Howe: Interfaces in Materials, John Wiley & Sons, New York (1997).

[24] D.Y. Yoon, C.W. Park, J.B. Koo. In: H. -I. Yoo, S. -J. L. Kang, editors. Ceramic Interfaces 2. London: Institute of Materials; (2001), p.3.

[25] J. M. Kosterlitz: Solid State Phys., Vol. 7 (1974), p.1046.

[26] H. van Beijeren: Phys. Rev. Lett., Vol. 38 (1977), p.993.

[27] S. -Y. Chung, D.Y. Yoon, S. -J. L. Kang: Acta Mater., Vol. 50 (2002) p.3361.

[28] Y. -I. Jung, S. -Y. Choi and S. -J. L. Kang: J. Am. Ceram. Soc., Vol. 86 (2003), p.2228.

[29] J. Chang and S. -J.L. Kang: Mater. Sci. Forum, in press.

[30] M. -S. Kim, J. G. Fisher, S. -J. L. Kang and H. -Y. Lee: J. Am. Ceram. Soc., Vol. 89 (2006), p.1237.

[31] J.G. Fisher, S. -Y. Choi and S. -J. L. Kang: J. Am. Ceram. Soc., Vol. 89 (2006), p.2206.

[32] J. G. Fisher, M. -S. Kim, H. -Y. Lee and S. -J. L. Kang: J. Am. Ceram. Soc., Vol. 87 (2004), p.937.

[33] Y.K. Cho and D.Y. Yoon: J. Am. Ceram. Soc., Vol. 87 (2004), p.87.

[34] B. -K. Lee, S. -Y. Chung and S. -J. L. Kang: Acta Mater., Vol. 48 (2000), p.1575.

[35] S. B. Lee, D. Y. Yoon and M. F. Henry: Acta Mater., Vol. 48 (2000), p.3071.

[36] J. B. Koo and D. Y. Yoon: Metall. Mater. Trans. A, Vol. 32A (2001), p.469.

[37] S. -Y Choi and S. -J. L. Kang: Acta Mater., Vol. 52 (2004), p.2937.

[38] Y.K. Cho, S. -J. L. Kang and D.Y. Yoon: J. Am. Ceram. Soc., Vol. 87, (2004), p.119.

[39] S. -Y. Choi and S. -J. L. Kang: Mater. Sci. Forum Vol. 475-479 (2005), Trans Tech Pub., Zürich, p.3891.

[40] D. -Y. Yang, S. -Y. Choi and S. -J. L. Kang: J. Ceram. Soc. Jap., Vol. 114 (2006), p.970.

[41] Y. -I. Jung, S. -Y. Choi and S. -J. L. Kang: Acta Mater., Vol. 54 (2006), p.2849.

[42] H. -Y. Lee, J. -S. Kim, N. -M. Hwang and D. -Y. Kim: J. Eur. Ceram. Soc., Vol. 20 (2000), p.731.