Direct Measurement of Titanium Pipe Diffusion Coefficients in Sapphire


Article Preview

The diffusion behavior of Ti3+ along basal dislocations in sapphire has been investigated by SIMS technique. High-density unidirectional dislocations were introduced by the high-temperature mechanical deformation, and Ti3+ ions were subsequently diffused along the dislocations. The SIMS diffusion profiles clearly showed diffusion tail due to the short circuit diffusion along the dislocations called pipe diffusion. Lattice diffusion coefficient and pipe diffusion coefficient of Ti3+ at 1300°C were measured to be 1.0±0.2×10-19 [m2/sec] and 2.0±0.6× 10-13 [m2/sec], respectively.



Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara




T. Nakagawa et al., "Direct Measurement of Titanium Pipe Diffusion Coefficients in Sapphire", Materials Science Forum, Vols. 558-559, pp. 939-942, 2007

Online since:

October 2007




[1] A. Nakamura, K. P. D. Lagerlöf, K. Matsunaga, J. Tohma, T. Yamamoto and Y. Ikuhara, Acta Mater., 53, 455 (2005).

[2] A. Nakamura, K. Matsunaga, J. Tohma, T. Yamamoto and Y. Ikuhara, Nature Mat., 2, 453 (2003).

[3] T. Mizoguchi, M. Sakurai, A. Nakamura, K. Matsunaga, I. Tanaka, T. Yamamoto and Y. Ikuhara, Phys. Rev. B, 70, 153101 (2004).

[4] G. Seibel, Int. J. Appl. Radiat. Isotopes, 15, 679 (1964).

[5] L.G. Harrison, Trans. Faraday Soc., 57, 1191 (1961).

[6] A. D. Le Claire and A. Rabinovitch, in: Diffusion in Crystalline Solids, edited by G. E. Murch and A. S. Nowick, Academic Press, Inc., Orland, 257 (1984).

[7] G. B. Gibbs, Physica Status Solidi, 16, K27 (1966).

[8] T. Nakagawa, A. Nakamura, I. Sakaguchi, N. Shibata, K. P. D. Lagerlöf, T. Yamamoto, H. Haneda and Y. Ikuhara, J. Ceram. Soc. Japan, 114, 1013 (2006).

[9] X. Tang, K. P. D. Lagerlöf and A. H. Heuer, J. Am. Ceram. Soc., 86, 560 (2003).