Faceting of Σ3 Grain Boundaries in Al


Article Preview

The temperature dependence of the energy of various facets of twin GBs has been measured. For the investigation of GB faceting the Al bicrystals of 99.999% wt. purity were grown by the modified Bridgman technique. One grain in these bicrystals is semi-surrounded by another one. Bicrystals were coated with a layer of Sn–Al alloy and annealed at various temperatures. Contact angles at the junction of a GB and two solid/liquid interfaces have been measured. The ratios of GB energy to solid/liquid interface energy have been calculated. Using these data, the Wulff-Herring plots and GB phase diagrams were constructed. Three different crystallographic facets were observed for the coincidence GB. Two of them are stable at all studied temperatures, the third one becomes metastable below ~ 800K. In GBs with θ = 3° only one facet (symmetric twin GB) is stable.



Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara




S. Protasova et al., "Faceting of Σ3 Grain Boundaries in Al", Materials Science Forum, Vols. 558-559, pp. 949-954, 2007

Online since:

October 2007




[1] J.M. Paik, Y.J. Park , M.S. Yoon, J.H. Lee, Y.C. Joo: Scripta mater Vol. 48 (2003), p.683.

[2] J.S. Choi, D.Y. Yoon: ISIJ International Vol. 41 (2001), p.478.

[3] J.B. Koo, D.Y. Yoon: Metall. Mater. Trans. A Vol. 32 (2001), p.469.

[4] M. Yoon, S.G.J. Mochrie, M.V. Tate, S.M. Gruner, E.F. Eikenberry: Surf. Sci. Vol. 411 (1998), p.70.

[5] C. Rottman, M. Wortis: Phys. Rev. B Vol. 24 (1981);: 6274 and Vol. 29 (1984), p.328.

[6] B.B. Straumal, S.A. Polyakov, E.J. Mittemeijer: Acta Mater. Vol. 54 (2006), p.167.

[7] O. Kogtenkova, B. Straumal, S. Protasova, S. Tsurekawa, T. Watanabe: Zt. Metallkd. Vol. 96 (2005), p.216.

[8] O.A. Kogtenkova, B.B. Straumal, S.G. Protasova, P. Zięba: Def. Diff. Forum Vols. 237-240 (2005), p.603.

[9] J.M. Pénisson, U. Dahmen, M.J. Mills: Phil. Mag. Lett. Vol. 64 (1991), p.277.

[10] P.J. Goodhew, T.Y. Tan, R.W. Balluffi: Acta metall. Vol. 26 (1978), p.557.

[11] F.D. Tichelaar, F.W. Schapink: J. Phys. Paris C5 Vol. 49 (1988), p.293.

[12] A. Bourret, J.J. Bacmann: Inst. Phys. Conf. Series Vol. 78 (1985), p.337.

[13] A. Barg, E. Rabkin, W. Gust: Acta metall. mater. Vol. 43 (1995), p.4067.

[14] U. Wolf, F. Ernst, T. Muschik, M.W. Finnis, H.F. Fischmeister: Phil. Mag. A Vol. 66 (1992), p.991.

[15] F. Ernst, M.W. Finnis, D. Hoffmann, T. Muschik, U. Schönberger, U. Wolf: Phys. Rev. Lett. Vol. 69 (1992), p.620.

[16] D. Hofmann, M.W. Finnis: Acta metall. mater. Vol. 42 (1994), p.3555.

[17] N.I. Noskova, V.A. Pavlov, S.A. Nemnonov: Fiz. Metall. Metallogr. Vol. 20 (1965), p.920.

[18] L. Vassamillet, T. Massalski: J. Appl. Phys. Vol. 34 (1963), p.3398.

[19] G. Carlos: Trans AIME Vol. 233 (1965), p. (1965).

[20] V.A. Finkel, V.I. Papirov: Fiz. Metall. Metallogr. Vol. 26 (1968), p.1108.

[21] J. Edington, D. Smallman: Phil. Mag. Vol. 11 (1965), p.1109.

[22] I. Dillamore, R. Smallman: Phil. Mag. Vol. 12 (1965), p.191.

[23] E. Aerts, P. Delavignette, C. Siems: J. Appl. Phys. Vol. 33 (1962), p.3078.

[24] H. Seeman, K. Scharr: Phys. Stat. Sol. Vol. 4 (1964), p.89.

[25] B. Straumal, S. Polyakov, E. Bischoff, E. Mittemeijer: Zt. Metallkd. Vol. 95 (2004), p.939.

[26] Straumal BB, Shvindlerman LS. Acta metall 1985; 33: 1735.

[27] B.B. Straumal, V.N. Semenov, O.A. Kogtenkova, T. Watanabe: Phys. Rev. Lett. Vol. 192 (2004), p.196101.