In Vitro Bioactivity Assessment of Ceramics in the SiO2–CaO–MgO System


Article Preview

Both solid-state reaction and glass-ceramic methods are used to obtain bioactive materials (CaSiO3) with different concentrations of MgO (6, 8, and 10 wt %) on the basis of the stoichiometric composition of CaO·SiO2. The in vitro bioactivity assessment is performed by immersing samples in SBF (simulated body fluids) for different periods of time. The analysis of the materials before immersion indicates the presence of different phases (akermanite, wollastonite and diopside) in the materials obtained by the solid state reaction method. It is possible to obtain wollastonite with incorporation of magnesium in its structure ((Ca, Mg)·SiO6) by the glass-ceramic method. The results obtained after immersing the samples in SBF indicate that a Ca, P-rich layer is formed on all the materials tested, even in those containing a high quantity of MgO. However, the layer formed in the MgO-free CaSiO3 ceramic is thicker than that formed in the MgO-containing materials.



Edited by:

H. Balmori-Ramirez, J.G. Cabañas-Moreno, H.A. Calderon-Benavides, K. Ishizaki and A. Salinas-Rodriguez




L. A. Bretado-Aragón et al., "In Vitro Bioactivity Assessment of Ceramics in the SiO2–CaO–MgO System", Materials Science Forum, Vol. 560, pp. 35-40, 2007

Online since:

November 2007




[1] T. Kokubo: J. Non-Cryst. Solids, Vol. 120 (1990), p.138.

[2] C. Wu, J. Chang: Mater. Lett., Vol. 58 (2004), p.2415.

[3] N. Iwata, G. Lee, S. Tsunakawa, Y. Tokuoka, N. Kawashima: Colloid Surface B., Vol. 33 (2004), p.1.

[4] T. Nonami, S. Tsutsumi: J. Mater. Sci.: Mater. Med., Vol. 10 (1999), p.475.

[5] Y. Miake, T. Yanagisawa, Y. Yajima, H. Noma, N. Yasui, T. Nonami: J. Dent. Res., Vol. 74 (1995), p.1756.

[6] P. N de Aza, F. Guitian, S de Aza: Scripta Mater., Vol. 31 (1994), p.1001.

[7] P. N. de Aza, Z. B. Luklinska, M. R Anseau, F. Guitian, S de Aza: J. Dent: Vol. 27 (1999), p.107.

DOI: 10.1016/s0300-5712(98)00029-3

[8] P. N de Aza, Z. B. Luklinska, M. R Anseau, F. Guitian, S de Aza: J. Electron Microsc., Vol. 182 (1995), p.24.

DOI: 10.1046/j.1365-2818.1998.00286.x

[9] A. Ibañez, F Sandoval: Bol. Soc. Esp. Ceram. V., Vol. 32 (1993), p.349.

[10] J. Lévesque, D. Dubé, M. Fiset, D. Mantovani: Mater. Sci. Forum, Vol. 426 (2003), p.521.

[11] E. Landi, A. Tampieri, M. Mattioli-Belmonte, G. Celotti, M. Sandri, A. Gigante, P. Fava, G. Biagini: J. European Ceram. Soc., Vol. 26 (2005), p.987.

[12] T. Kokubo, H. Kushitani, S. Sakka: J. Biomed. Mater. Res., Vol. 24 (2004), p.721.

[13] J. Christoffersen, M.R. Christoffersen, W. Kibalczyc, A. Zielenkiewicz, W. Zielenkiewicz: J. Non-Cryst. Solids, Vol. 106 (1990), p.355.

DOI: 10.1016/0022-0248(90)90080-5

[14] N. C. Blumenthal: Clin. Orthop., Vol. 247 (1989), p.279.

[15] E. Jallot: Appl. Surf. Sci., Vol. 211 (2003), p.89.

[16] D. Pereira, S. Cachinho, M. C Ferro, M. H. V. Fernandes: J. Eur. Ceram. Soc., Vol. 24 (2004), p.3693.

[17] M. Uchida, H. M. Kim, T. Kokubo, M. Nawa, T. Asano, K. Tanaka, T. Nakamura: J. Biomed. Mater. Res. Vol. 60 (2002), p.277.

Fetching data from Crossref.
This may take some time to load.