Self-Affine Quasi-Static Fracture of Soda-Lime Glass


Article Preview

In the present work we discuss the self-affine properties of the fracture surfaces of sodalime glass obtained under quasi-static conditions. The fracture surfaces are generated using a threepoint bending system in normal room conditions and under high humidity conditions. The surfaces were recorded both by Scanning Electron Microscopy and Atomic Force Microscopy, and their selfaffine properties are characterized using the Variable Bandwidth method. For both conditions it is observed that the major part of the fracture surface is occupied by the mirror zone. On the other hand, the self-affine analysis reveals that for both conditions the roughness exponent has values centred at around 0.58 with moderate dispersion, in agreement with previous results. Our findings support the hypothesis of the existence of a characteristic roughness exponent for quasi-static fracture with a value that is significantly lower than the value of 0.8 reported for rapid fracture conditions.



Edited by:

H. Balmori-Ramirez, J.G. Cabañas-Moreno, H.A. Calderon-Benavides, K. Ishizaki and A. Salinas-Rodriguez




C. Guerra-Amaro et al., "Self-Affine Quasi-Static Fracture of Soda-Lime Glass", Materials Science Forum, Vol. 560, pp. 41-46, 2007

Online since:

November 2007




[1] R. Bradt and R. Tressler: Fractography of Glass (Plenum Press, New York, 1994).

[2] J. J. Mecholsky, W. Freiman and W. Rice: in Fractography in Failure Analysis ASTM STP 645 (1978), p.363.

[3] B. Mandelbrot , D Passoja and A. Paullay: Nature Vol.; 308, (1984), p.721.

[4] J. Schmittbhul, J. P. Vilotte and S. Roux: Phys. Rev. E. Vol. 51 (1995), p.131.

[5] E. Bouchaud: J. Phys. Cond. Matter Vol. 9 (1997), p.4319.

[6] M. Hinojosa, E. Bouchaud and B. Nghiem: Ingenierías Vol. III (2000), p.16.

[7] E. Reyes and M. Hinojosa: Ingenierías, Vol. IV (2001), p.27.

[8] M. Hinojosa, E. Reyes, C. Guerrero and U. Ortiz: Ingenierías, Vol. V (2002), p.50.

[9] M. Hinojosa and J. Aldaco: Journal Materials Research Vol. 17 (2002), p.1276.

[10] C. Guerrero, E. Reyes and V. González: Polymer Vol. 43 (2002), pp.6683-6693.

[11] M. Hinojosa, J. Aldaco, R. Rodríguez, and U. Ortiz: Materials Research Society Symp. Series Vol. 882E (2005). p. EE3. 1. 1.

[12] L. Chávez, V. González and M. Hinojosa: Ingenierías, Vol. VIII (2005), p.7.

[13] M. Hinojosa, V. González, J. Sánchez and U. Ortiz: Polymer Vol. 45 (2004), p.4829.

[14] M. Hinojosa, E. I. Morales and N. Mohamed: (to be published).

[15] V. Y. Milman, R. Blumenfeld, N. A. Stelmashenko and R. C. Ball: Phys. Rev. Lett. Vol. 71 (1993), p.204.

[16] P. Daguier, B. Nghiem, E. Bouchaud and F. Creuzet: Phys. Rev. Lett. Vol. 78 (1997), p.1062.

[17] D. Bonamy, L. Ponson, S. Prades, E. Bouchaud and C. Guillot: Phys. Rev. Lett. Vol. 97 (2006), p.135504.

[18] L. Ponson, D. Bonamy and E. Bouchaud: Phys. Rev. Lett. Vol. 96 (2006), p.35506.

[19] L. Ponson, D. Bonamy, H. Auradou, G. Mourot, S. Morel, E. Bouchaud, C. Guillot J. P. Hulin: International Journal of Fracture, Vol. 140 (2006), p.27.

DOI: 10.1007/s10704-005-3059-z

[20] V. González, O. Chacón, M. Hinojosa and C. Guerrero: Fractals Vol. 10 (2002), p.373.

[21] F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière: Phys. Rev. Lett. Vol. 90 (2003) , p.075504(4).

DOI: 10.1103/physrevlett.90.075504

[22] M. Marder: Nature Vol. 381 (2002), p.275.

[23] S. M. Wiederhorn, A. Dretzke, J. Rödel: J. Am. Ceram. Soc., Vol. 85 (2002), p.2287.

Fetching data from Crossref.
This may take some time to load.