Investigation of Mechanical and Structural Properties of AlN Thin Films Prepared by Mid-Frequency Pulsed Magnetron Sputtering


Article Preview

In this work, we investigated the deposition of the AlN thin films on silicon (100) substrates by mid-frequency pulsed magnetron sputtering of a metal Al target in an Ar-N2 gas mixture at room temperature. The films were characterized by various means for the composition, the crystal structure, the surface morphology, and the hardness and Young’s modulus. AFM surface RMS (root mean square) roughness analysis revealed that the surface morphology has relation with the nitrogen flow rate in the Ar–N2 gas mixture. The highest surface smoothness was observed at the nitrogen flow rate of 30-50%. The phenomenon was interpreted by the action of the vapor-solid interface on the film growth, as well as the nonequilibrium processes occurred in the film growth.



Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




Z. X. Mu et al., "Investigation of Mechanical and Structural Properties of AlN Thin Films Prepared by Mid-Frequency Pulsed Magnetron Sputtering", Materials Science Forum, Vols. 561-565, pp. 1185-1188, 2007

Online since:

October 2007




[1] S. Strite, H. Morkoc: J. Vac. Sci. Technol. B 1992(10)(4): 1237-1266.

[2] M. B. Assouar, O. Elmazria, L. Le Brizoual, et al: Diamond and Related Materials 11 (2002): 413-417.

DOI: 10.1016/s0925-9635(01)00708-7

[3] Ravi Bathe, R.D. Vispute, Dan Habersat, et al: Thin Solid Films, 398 -399 (2001): 575-580.

DOI: 10.1016/s0040-6090(01)01321-9

[4] Q.X. Guo, M. Yoshitugu, T. Tanaka, et al: Thin Solid Films 483 (2005): 16- 20.

[5] Atul Khannaa and Deepak G. Bhat: J. Vac. Sci. Technol. 2007A(25)(3): 557-565.

[6] J.P. Kar, G. Bose, S. Tuli: Current Applied Physics 6 (2006): 873-876.

[7] E. Mounier, Y. Pauleau: J. Vac. Sci. Technol. A, Vol. 14, No. 4, Jul/Aug 1996: 2535-2543.

[8] Yong Zoo You, Daeil Kim: Thin Solid Films 515 (2007): 2860-2863.

DOI: 10.1016/j.tsf.2006.08.014

[9] K. Kusaka, D. Taniguchi, T. Hanabusa, et al: Vacuum 59 (2000): 806-813.

[10] I.C. Oliveiraa, K.G. Grigorovb, H.S. Maciela, et al: Vacuum 75 (2004): 331-338.

[11] M.A. Auger, L. Vazquez, M. Jergel, et al: Surf. and Coat. Tech. 180 -181 (2004): 140-144.

[12] V. Brien, P. Pigeat: Journal of Crystal Growth,299 (2007): 189-194.

[13] I. Petrov, P. B. Barna, L. Hultman: J. Vac. Sci. Technol. 2003A 21(5), S117-S128.

[14] R. S. Pessoa, G. Murakami, G. Petraconi, et al: Brazilian Journal of Physics, vol. 36, no. 2A, June, (2006).

[15] Yuya Kajikawa, Suguru Noda, and Hiroshi Komiyama: J. Vac. Sci. Technol. 2003 A21(6) : 1943-(1954).

Fetching data from Crossref.
This may take some time to load.