Comparison of Mechanical Properties between As-Quenched and Annealed Metallic Glass Pd44Cu31Ni8P17


Article Preview

In order to examine the correlation between a mechanical property and an excess free volume for metallic glass Pd44Cu31Ni8P17, longitudinal and transverse ultrasonic velocities were measured to estimate longitudinal and transverse elastic constants, c11 and c44. An as-quenched sample, an annealed one at a temperature just below a glass transition temperature Tg and a crystalline one were prepared. The as-quenched sample contains the excess free volume depending on the preparing process. The Young’s modulus E, the Poisson’s ratio, a bulk modulus and c12 are estimated using c11 and c44. The values of c11, c 44 , c12 and E of the as-quenched one are smaller than those of the annealed sample losing excess free volume by about 0.2 % and much smaller than those of the crystalline one. The Poisson’s ratio for the as-quenched sample and the annealed one are 0.389 and 0.387, respectively, which are much larger than that for the crystalline one with 0.349.



Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




T. Fukami et al., "Comparison of Mechanical Properties between As-Quenched and Annealed Metallic Glass Pd44Cu31Ni8P17", Materials Science Forum, Vols. 561-565, pp. 1303-1306, 2007

Online since:

October 2007




[1] B. G. Bagley and F. J. DiSalvo, Amorphous Magnetism (H.O. Hopper and A.M. deGraaf eds, New York, Plenum, 1973)143.

[2] H. S. Chen, Acta Met. 22, 1505, (1974).

[3] H. W. Kui, A. L. Greer and D. Turnbull, Appl. Phys. Lett., 45, 615 (1984).

[4] H. W. Kui and H. W. Turnbull, Appl. Phys. Lett., 47, 796 (1985).

[5] R. Willnecker, K. Wittmann and G. P. Gorter, J. Non-Crys. Solids, 156-158, 450 (1993).

[6] A. Inoue, N. Nishiyama, and T. Matsuda, Mater. Trans., JIM, 37, 181 (1996).

[7] N. Nishiyama and A. Inoue, Mater. Trans., JIM, 38, 464 (1997).

[8] A. Inoue and T. Zhang, Mater. Trans., JIM, 36, 1184 (1995).

[9] L. M. Wang, W. H. Wang, R. J. Wang, Z. J. Zhan, D. Y. Dai, L. L. Sun and W. K. Wang, Appl. Phys. Lett. 77, 1147 (2000).

[10] L. M. Wang, L. L. Sun, W. H. Wang, R. J. Wang, Z. J. Zhan, D. Y. Dai, and W. K. Wang, Appl. Phys. Lett. 77, 3734 (2000).

[11] T. Fukami, D. Okai, M. Yokota, K. Kakei, H. Yamamoto, T. Yamasaki, T. Zhang and A. Inoue, J. Non-crystalline Solidss, (2007) in press.

[12] M. L. Lind, G. Duan and W. L. Johnson, Phys. Rev. Lett., 97, 15501 (2006).

[13] D. I. Bolef and J. G. Miller, in Physical Acoustics, edt. W. P. Mason and R. N. Thurston (Academic) Press, New York, 1971) vol. VIII, p.95.

[14] T. Fukami, Jpn. J. Appl. Phys. 29, 206 (1990).

[15] K. Hajlaoui, T. Benameur, G. Vaughan and A.R. Yavari, Scripta Materialia, 51, ( 2004) 843.

[16] A. R. Yavari, M. Tonegaru, N. Lupu, A. Inoue, E. Matsubara, G. Vaughan, A. Kvick and W.J. Botta, Mater. Res. Symp., Proc. Vol. 806 (2004) 203.

[17] A. Inoue, T. Negishi, H. M. Kimura, T. Zhang and A. R. Yavari, Mater. Tran. JIM, 39, 318 (1998).

[18] E. Matsubara, T. Tanuma, Y. Waseda, A. Inoue, T. Zhang and T. Masumoto, J. Non-Crys. Solids 150, 380 (1992).