Controlled Elasticity in Nano-Structured Metallic Glass by Ion Implantation Method


Article Preview

Different reactivity of ions has been implanted into Zr-Cu metallic glass to obtain nano-structured surface with controlled elasticity. The penetration of glass forming element of Ni+ into crystalline Zr-Cu stabilizes glassy phase to induce crystalline-amorphous (c-a) transition during implantation process. In the meanwhile, penetration of N+ into glassy matrix induces precipitation of (Zr, Cu)N at the mean penetration depth of N. Critical N concentration for nitride formation is estimated to be (Zr,Cu)-20at%N, which also suggests existing of N solid solution of glassy phase. Inert element of Ar+ yields dispersion of nano-voids among glassy matrix. Nano-indentation tests reveal that Young’s modulus of ion implanted glassy film dramatically changes with respect to the induced nano-structure, to decrease 0.4 times for Ar+, to increase 1.3 times for N+ as comparison with that for as-deposited state.



Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




S. Muraishi et al., "Controlled Elasticity in Nano-Structured Metallic Glass by Ion Implantation Method", Materials Science Forum, Vols. 561-565, pp. 1315-1318, 2007

Online since:

October 2007




[1] A. Inoue: Intermetallics 8(2000) 455-468.

[2] D. B. Miracle: Nature Mat. 3(2004) 697-702.

[3] K. H. J. Buschow: J. Appl. Phys. 52(1981) 3319-3323.

[4] Z. Altounian, T. Guo-hua, J. O. Strom-Olsen: J. Appl. Phys 53(1982) 4755-4760.

[5] J. F. Ziegler, J. P. Biersack and U. Littmark: The Stopping and Range of Ions in Solids, (Pergamon, New York, 1985).

[6] S. Muraishi, H. Naito, T. Aizawa: Mater. Trans. 46 (12) (2005) 2751-2754.

[7] S. Muraishi, H. Naito: The Proceedings of 2006 TMS Annual Meeting & Exhibition, Surfaces and Interfaces in Nanostructured Materials II, San Antonio TX, Mar. 12-16, (2006) 3-8.

[8] I. N. Sneddon: Int. J. Engng Sci. 3 (1965) 47-57.

[9] W. C. Oliver, G. M. Pharr: J. Mat. Res. 7 (1992) 1564-1583.

[10] Z. Y. Ai, Z. Q. Yue, L. G. Tham, M. Yang: Int. J. Engng. Sci. 40(2002) 1453-1483.

[11] Fuqian Yang: Mater. Sci. Eng. A358(2003) 226-232.

[12] N. Schwarzer: J. Phys. D: Appl. Phys. 37(2004) 2761-2772.

[13] T. Mura, Micromechanics of defects in solids, second, revised edition, Kluwer Academic, The Netherland.

[14] F. G. Yuan, S. Yang, B. Yang: Int. J. Solid Str. 40(2003) 331-342.

[15] S. Muraishi, H. Naito, T. Aizawa: Mat. Trans. 48(7) (2007), in printed.

[16] P. Zeman, R. Cerstvy, P. H. Mayerhofer, C. Mitterer, J. Musil: Mater. Sci. Eng. A289(2000) 189-197.

[17] A. Anttila, J. Keinonen, M. Uhmacher, and S. Vahvaselka: J. Appl. Phys. 57(1985) 1423-1425.

Fetching data from Crossref.
This may take some time to load.