Structure of Zr-Cu and Zr-Ni Liquid Alloys Studied by High-Energy X-Ray Diffraction


Article Preview

In order to obtain an insight into the high glass-forming ability of bulk metallic glasses, we have analyzed liquid structures of the Zr-Cu and the Zr-Ni binary alloys with different compositions. High-energy (E = 113 keV) x-ray diffraction experiments were carried out for the liquid alloys levitated by a conical nozzle levitation (CNL) technique. While a peculiar shoulder on the second peak was observed in the structure factors of the Zr-Cu liquid alloys, those of the Zr70Ni30 and the Zr50Ni50 liquids exhibit an asymmetric shape of the second peak. In addition, it was found that the effect of concentration variation in the liquid Zr-Ni alloys was significantly different from that of the liquid Zr-Cu alloys. The liquid structure analyses using the reverse Monte Carlo (RMC) simulation have clarified that a degree of the short-range correlation between the constituents in the liquids affects substantially the glass-forming ability of the binary Zr alloys.



Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




A. Mizuno et al., "Structure of Zr-Cu and Zr-Ni Liquid Alloys Studied by High-Energy X-Ray Diffraction", Materials Science Forum, Vols. 561-565, pp. 1349-1352, 2007

Online since:

October 2007




[1] A. Inoue and A. Takeuchi: Mater. Trans. Vol. 43 (2002), p.1892.

[2] W.H. Wang, C. Dong and C.H. Shek: Mater. Sci. Eng. R 44 (2004), p.45.

[3] F.C. Frank: Proc. R. Soc. London A Vol. 215 (1952), p.43.

[4] K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson and D.S. Robinson: Phys. Rev. Lett. Vol. 90 (2003), p.195504.

[5] T. Shenck, D. Holland-Moritz, V. Simonet, R. Bellissent and D. M. Herlach: Phys. Rev. Lett. Vol. 89 (2002), p.075507.

[6] A. Mizuno, S. Matsumura, M. Watanabe, S. Kohara and M. Takata: Mater. Trans. Vol. 46 (2005), p.2799.

[7] A. Mizuno, S. Kohara, S. Matsumura, M. Watanabe, J.K.R. Weber and M. Takata: Mat. Sci. Forum Vol. 539-543 (2007), p. (2012).

[8] J. Saida, M. Kasai, E. Matsubara and A. Inoue: Ann. Chim. Sci. Mat. Vol. 27 (2002), p.77.

[9] T. Fukunaga, K. Itoh, T. Otomo, K. Mori, M. Sugiyama, H. Kato, M. Hasegawa, A. Hirata, Y. Hirotsu, A.C. Hannon, Intermetallics Vol. 14 (2006), p.893.

DOI: 10.1016/j.intermet.2006.01.006

[10] J. Saida, M. Matsushita and A. Inoue: Mater. Trans. Vol. 43 (2003), p. (1937).

[11] S. Kohara, K. Suzuya, Y. Kashihara, N. Matsumoto, N. Umesaki and I. Sakai: Nucl. Instr. Meth. A Vol. 467-468 (2001), p.1030.

[12] T. E. Faber and J. M. Ziman: Phil. Mag. 11 (1965), p.153.

[13] R.L. McGreevy and L. Pusztai, Mol. Simul. Vol. 1 (1988), p.359.

[14] T. Abe, M. Shimono, M. Ode, H. Onodera, J. Alloy. Compd. Vol. 434-435 (2007) p.152.

Fetching data from Crossref.
This may take some time to load.