Silk as Substratum for Cell Attachment and Proliferation


Article Preview

Silk fibroin (SF), isolated from silkworm (Bombyx mori) cocoons, is a natural biodegradable polymer. Over the past decade, there was some interest in using SF as a biomedical material. As part of a project to develop tissue-engineered constructs for the surgical restoration of the ocular surface (cornea, conjunctiva), we have investigated the capacity of SF to function as a substratum for the attachment and growth of corneal stem/progenitor cells harvested from the corneoscleral limbus of donor human corneal tissue. SF membranes were produced from cocoons following a protocol involving successive dissolution steps, filtration, dialysis, evaporation, and methanol treatment. Human limbal epithelial cells were harvested from donor tissue and seeded onto SF membranes. After 5 days, the culture was fixed and stained with specific agents to visualize the cells. The study indicated profuse cellular attachment and growth. SF membranes appear to be suitable as a substratum for the repair of damaged ocular surface.



Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




T. V. Chirila et al., "Silk as Substratum for Cell Attachment and Proliferation", Materials Science Forum, Vols. 561-565, pp. 1549-1552, 2007

Online since:

October 2007




[1] S. Selvam, P.B. Thomas and S.C. Yiu: Ocul. Surf. 4 (2006) 120.

[2] H.S. Dua, J.A.P. Gomes, A.J. King and V.S. Maharajan: Surv. Ophthalmol. 49 (2004) 51.

[3] I. R. Schwab, N.T. Johnson and D.G. Harkin: Arch. Ophthalmol. 124 (2006) 1734.

[4] S.C.G. Tseng: Clin. Exper. Ophthalmol. 35 (2007) 109.

[5] V.S. Maharajan, V. Shanmuganathan, A. Currie, A. Hopkinson, A. Powell-Richards and H.S. Dua: Clin. Exper. Ophthalmol. 35 (2007) 140.

[6] N. Minoura, M. Tsukada and M. Nagura: Biomaterials 11 (1990) 430.

[7] G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond and D.L. Kaplan: Biomaterials 24 (2003) 401.


[8] O. Hakimi, D.P. Knight, F. Vollrath and P. Vadgama: Composites B. 38 (2007) 324.

[9] N. Minoura, S. Aiba, Y. Gotoh, M. Tsukada and Y. Imai: J. Biomed. Mater. Res. 29 (1995) 1215.

[10] K. Inouye, M. Kurokawa, S. Nishikawa and M. Tsukada: J. Biochem. Biophys. Meth. 37 (1998) 159.

[11] S. Sofia, M.B. McCarthy, G. Gronowicz and D.L. Kaplan: J. Biomed. Mater. Res. 54 (2001) 139.

[12] H.J. Jin, J. Chen, V. Karageorgiou, G.H. Altman and D.L. Kaplan: Biomaterials 25 (2004) 1039.

[13] V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra and D. Kaplan: J. Biomed. Mater. Res. 71A (2004) 528.

[14] H. J. Kim, U. -J. Kim, G. Vunjak-Novakovic, B. -H. Min and D.L. Kaplan: Biomaterials 26 (2005) 4442.

[15] H. Aoki, N. Tomita, Y. Morita, K. Hattori, Y. Harada, M. Sonobe, S. Wakitani and Y. Tamada: Bio-Med Mater Eng 13 (2003) 309.

[16] R.E. Unger, M. Wolf, K. Peters, A. Motta, C. Migliaresi and C.J. Kirkpatrick: Biomaterials 25 (2004) 1069 & 5137.

[17] A. Motta, C. Migliaresi, F. Faccioni, P. Torricelli, M. Fini and R. Giardino: J. Biomater. Sci. Polym. Ed. 15 (2004) 851.

[18] E. Servoli, D. Maniglio, A. Motta, R. Predazzer and C. Migliaresi: Macromol. Biosci. 5 (2005) 1175.


[19] D.G. Harkin, Z. Barnard, P. Gillies, S.L. Ainscough and A.J. Apel: Br. J. Ophthalmol. 88 (2004) 1154.