Self-Propagating High-Temperature Synthesis of Porous Nickel-Titanium


Article Preview

Porous equiatomic Nickel-Titanium (NiTi) is a strong candidate material for bone engineering applications because its mechanical properties are within the range of bone and its porosity allows for biologic interlock of the material to the surrounding tissue. Self-propagating high-temperature synthesis (SHS) is one method for producing porous NiTi. Nickel and titanium powders, -325 mesh, were mixed for 24 hours then pressed into cylindrical pellets (0.5 inch diameter, 0.5 inch height) to a theoretical green density of approximately 53%. The pellets were preheated in flowing argon for one hour then ignited using a tungsten coil. Scanning electron microscopy and electron dispersive spectroscopy (EDS) show localized differences of stoichiometry suggesting variations in the crystal structure where the Ni to Ti atomic ratio varied between 48.5:51.5 and 50.7:49.3. X-ray diffraction (XRD) (Philips X’Pert PRO) confirmed the presence crystalline equiatomic NiTi as well as other intermetallic compounds including NiTi2 and Ni4Ti3. Nanoindentation (MTS Nano Indenter XP) of this heterogeneous material indicates a mean range indentation modulus of 89.6 ± 9.4 GPa. This is on the same order of magnitude as bone, which has an elastic modulus range of 14-20 GPa.



Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




R. Ayers et al., "Self-Propagating High-Temperature Synthesis of Porous Nickel-Titanium", Materials Science Forum, Vols. 561-565, pp. 1643-1648, 2007

Online since:

October 2007




[1] S.J. Simske, R Sachdeva: J Biomed Mater Res Vol. 29 (1995), p.527.

[2] R.A. Ayers, S.J. Simske, T.A. Bateman, A. Petkus, R.L.C. Sachdeva, V.E. Gyunter: J Biomed Mater Res 45 (1999), p.42.

[3] S.A. Shabalovskaya: Biomed Mater Eng Vol. 6 (1996), p.267.

[4] K. Dai: Biomed Mater Eng Vol. 6 (1996), p.233.

[5] G. Airoldi, G. Riva: Biomed Mater Eng Vol. 6 (1996), p.299.

[6] V.I. Itin, V.E. Gyunter, S.A. Shabalovskaya, R.L.C. Sachdeva: Materials Characterization Vol. 32 (1994), p.179.

[7] H.C. Yi, J.J. Moore: J Minerals Metals Mater Soc Vol. 42 (1990), p.31.

[8] Z.A. Munir: Mat Sci Eng A A287 Vol. 2, (2000), p.125.

[9] J.J. Moore: The Minerals, Metals & Materials Society, (1994) p.817.

[10] Z.A. Munir: Met. and Matls. Transactions A, Vol. 27A (1996), p. (2080).

[11] V.A. Knyazik, A.G. Merzhanov, V.B. Solomon, A.S. Shteinberg: Combust. Explos. Shock Waves, Vol. 21 (1985), p.333.

[12] O. Yamada, Y. Miyamoto, and M. Koizumi: J Mater Res, Vol. 1 (1986), p.275.

[13] B.Y. Li, L.J. Rong, Y.Y. Li, V.E. Gjunter; Acta Mater. Vol. 48 (2000), p.3895.

[14] X. Zhang: Combustion Synthesis of Porous Titanium Based Ceramic and Intermetallic Composite Materials (Colorado School of Mines 2002).

[15] H.C. Yi: Combustion Synthesis of NiTi, niTi-X (X=Fe, Al, Pd) Shape memory Intermetallic Compounds (University of Auckland 1990).

[16] C.P. Frick, A.M. Ortega, J. Tyber, A. El.M. Maksound, H.J. Maier, Y. Liu, K. Gall: Mat. Sci. Eng. A Vol. 405 (2005), p.34.

[17] E. Schüller, O.A. Hamed, M. Bram, D. Sebold, H.P. Bruchkremer, D. Stöver: Advanced Engineering Materials, Vol. 5 (2003), p.918.

[18] K. Otsuka and X. Ren: Prog. Mat. Sci. Vol. 50 (2005), p.511.

[19] J.J. Klawitter, S.F. Hulbert: J Biomed Mater Res Symp Vol. 2 (1971), p.161.

Fetching data from Crossref.
This may take some time to load.