Modeling of Mechanical Behavior of Porous Sintered Timing Wheel in Contact with Chain Wheels

Abstract:

Article Preview

The mechanical properties of sintered timing wheel in contact with chain wheels were analysed using Finite Element Methods (FEM), in which the timing wheel is modelled as a metal powder. The mechanical properties of sintered timing wheel were investigated as a function of sintered density. Tensile strength and Young’s modulus increased with a decrease in porosity. Current methods of calculating gear contact stresses use Hertz’s equations, which were originally derived for contact between sintered timing wheel and chain wheels. The results of the 2D dimensional FEM analyses from ANSYS are presented. The relationship between relative density of P/M steels and mechanical behavior is also obtained from FEM and compared with the experimental data. Good agreement between the experimental and FEM results is observed, which demonstrates that FEM can capture the major features of the P/M steels behaviour during loading. This indicates that the FEM model is accurate.

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee

Pages:

1649-1652

DOI:

10.4028/www.scientific.net/MSF.561-565.1649

Citation:

M. Alizadeh et al., "Modeling of Mechanical Behavior of Porous Sintered Timing Wheel in Contact with Chain Wheels", Materials Science Forum, Vols. 561-565, pp. 1649-1652, 2007

Online since:

October 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.