Formation of Defect Clusters in SrTiO3 Crystals Implanted with Xenon Ions


Article Preview

SrTiO3 crystals were implanted with 100 keV xenon (Xe+) ions at 673 or 1073 K up to 2.0 × 1020 ions m−2. Defect clusters formed in the ion-implanted samples were investigated with conventional and high-resolution transmission electron microscopy. Nanometer-sized clusters were formed in the samples. The clusters grew large in size after post-implantation annealing and with increasing the implantation dose. The clusters were faceted with {100}, or {110} of SrTiO3. Though the nano-sized clusters were expected to contain Xe atoms, they were not in crystalline state. The results suggest that even if the clusters contain Xe atoms, they also contain other point defects such as vacancies.



Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




M. H. Song et al., "Formation of Defect Clusters in SrTiO3 Crystals Implanted with Xenon Ions", Materials Science Forum, Vols. 561-565, pp. 1757-1760, 2007

Online since:

October 2007




[1] W.J. Weber et al.: J. Mater. Res. Vol. 13 (1998), p.1434.

[2] R.C. Ewing, W.J. Weber and J. Lian: J. Appl. Phys.: Vol. 95 (2004), p.5949.

[3] K. Oyoshi, S. Hishita and H. Haneda: J. Appl. Phys. Vol. 87 (2000), p.3450.

[4] S. Nakao, Z. Wang, P. Jin, Y. Miyagawa and S. Miyagawa: Nucl. Instrum. Methods Phys. Res. B Vol. 191 (2002), p.226.

[5] S. Soulet, J. Chaumont, C. Sabathier and J.C. Krupa: J. Mater. Res. Vol. 17 (2002), p.9.

[6] A. Meldrum, L.A. Boatner, W.J. Weber and R.C. Ewing: J. Nucl. Mater. Vol. 300 (2002), p.242.

[7] Y. Zhang, et al.: Phys. Rev. B Vol. 72, (2005), pp.094112-1.

[8] Y. Zhang, C.M. Wang, M.H. Engelhard and W.J. Weber: J. Applied Phys. Vol. 100 (2006), pp.113533-1.

[9] C. Sabathier, J. Chaumont and J. -C Krupa: Nucl. Instrum. Methods Phys. Res. B Vol. 196 (2002), p.308.

[10] J. Albrecht, et al.: Surf. Sci. Vol. 547 (2003), p. L847.

[11] K. Daisuke, et al.: Nature Mater. Vol. 4 (2005), p.816.

[12] B. Yang, P.D. Townsend, Y. Fan and R. Fromknecht: Nucl. Instrum. Methods Phys. Res. B Vol. 226 (2004), p.549.

[13] C.M. Wang, et al.: J. Appl. Phys. Vol. 95 (2004), p.5060.

[14] M. Song, K. Mitsuishi and K. Furuya: Mater. Sci. Eng. A Vol. 304-306 (2001), p.135.

[15] N. Ishikawa and K. Furuya: Ultramicroscopy Vol. 56 (1994), p.211.

[16] J.F. Ziegler, J.P. Biersack and U. Littmark, in: The Stopping and Range of Ions in Solids, edited by J.F. Ziegler, Pergamon Press, NY (1985).

[17] K. Furuya, N. Ishikawa and C.W. Allen: J. Microsc. Vol. 194 (1999), p.152.

[18] C.W. Allen, et al.: Philos. Mag. Letts. Vol. 83 (2003), p.57.

[19] Information on http: /en. wikipedia. org/wiki/Strontium_titanate.