Simulation of Cold Ring Rolling Based on Rate Dependent Crystal Plasticity

Abstract:

Article Preview

Material behaviors of anisotropy and rate sensitivity affect cold ring rolling greatly. So, a self-developed incremental model of rate dependent crystal plasticity (RDCP) is utilized to forecast the deformation characteristics of this forming process based on a 3D FE model under ABAQUS/Explicit environment. The results show that the model of RDCP captures material behaviors of anisotropy and rate sensitivity better in this forming process by the comparison with the model of J2 plasticity; with the decrease of rate sensitivity coefficient, the forming process becomes more unstable with smaller rolling force and growth in ring radial direction; with the increase of feed rate of idle roll, the deformation of ring becomes more even while the rolling force becomes larger.

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee

Pages:

1813-1817

DOI:

10.4028/www.scientific.net/MSF.561-565.1813

Citation:

H. W. Li et al., "Simulation of Cold Ring Rolling Based on Rate Dependent Crystal Plasticity", Materials Science Forum, Vols. 561-565, pp. 1813-1817, 2007

Online since:

October 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.