Study of the Early Stages of Recrystallization in a Cold Rolled ELC Steel Using FIB-EBSD Tomography


Article Preview

An extra low carbon steel was cold rolled to 85% reduction and annealed at 680 °C to generate a microstructure containing ~2 % recrystallized grains. A partly recrystallized volume was analyzed using 3-D FIB-EBSD tomography. The results show that nucleation and subsequent growth of recrystallizing grains is more complex processes than that revealed using 2-D metallographic techniques. In the present steel, it was found that subgrains were found to be the origin of nucleation and these grains exhibit an internal structure similar to the surrounding deformation substructure. However, a certain subgrain keeps expanding to a stage where some part or parts of the boundary reach(es) and consume(s) a high stored energy deformation zone(s) to form (a) local dislocation free zone(s) having an orientation similar to the subgrain. After this stage, the residual dislocations in the original subgrain are annihilated and nuclei enter a well-defined growth stage. The overall growth of recrystallization nuclei was found to be controlled by the variation in both the stored energy and orientation of the surrounding deformation substructure that results in heterogeneous growth by so-called orientation pinning.



Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




W. Q. Xu and M. Ferry, "Study of the Early Stages of Recrystallization in a Cold Rolled ELC Steel Using FIB-EBSD Tomography", Materials Science Forum, Vols. 561-565, pp. 2013-2016, 2007

Online since:

October 2007




[1] Hutchinson, W.B. (1989). Acta Mater. 37, p.1047.

[2] Humphreys, F.J. and Hatherly, M. (2004). Recrystallization and Related Annealing Phenomena, 2nd edition, Elsevier Limited.

[3] Xu, W. and Ferry, M. (2007). Mater. Charact. in press.

[4] Xu, W., Ferry, M, Cairney, J. and Humphreys, F.J. (2007) Acta Mater. in press.

[5] Schmidt, S., Nielsen, S. F., Gundlach, C., Margulies, L., Huang, X. and Juul Jensen, D. (2004), Science. 305, p.229.

[6] Larsen, A. W., Poulsen, H. F., Margulies, L., Gundlach, C., Xing, Q., Huang, X. and Jensen, D. J. (2005). Scripta Mater. 53, p.553.

[7] Engler, O. (1998). Acta Mater. 46, p.1555.