Physical Aging and Creep Behavior of Poly(Methyl Methacrylate)

Abstract:

Article Preview

In this work, the physical aging and its effect on nonlinear creep behavior of poly(methyl methacrylate) are presented. After annealing above Tg to release the previous thermal and stress history, the samples were quenched to 60oC, aged for various times, and were then tested at three different stress levels (22MPa, 26MPa and 30MPa) at room temperature of 27oC. At each stress level, the creep strain was converted to compliance and measured as a function of test time and aging time. The test results show that higher stress accelerates creep rate of the material while physical aging plays a reverse role. The time-aging time superposition is applicable to build a master creep compliance curve at each stress level, and it is demonstrated that the shift rate deceases with increasing stress. Moreover, based on the time-stress superposition principle, a unified master curve was constructed by further shifting the sub-master curves at 30MPa and 26 MPa to a reference stress level of 22MPa.

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee

Pages:

2041-2044

Citation:

W. B. Luo et al., "Physical Aging and Creep Behavior of Poly(Methyl Methacrylate)", Materials Science Forum, Vols. 561-565, pp. 2041-2044, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] J. M. Hutchinson: Progress in Polymer Science Vol. 20 (1995), p.703.

[2] L. C. E. Struik: Physical aging in amorphous polymers and other materials (Elsevier, New York 1978).

[3] S. L. Simon, J. W. Sobieski and D. J. Plazek: Polymer Vol. 42 (2001), p.2555.

[4] A. Brunacci, J. M. G. Cowie, R. Ferguson and I. J. McEwen: Polymer Vol. 38 (1997), p.865.

[5] A. Pasricha, D. A. Dillard et al.: Composites Science and Technology Vol. 57 (1997), p.1271.

[6] J. Z. Wang, H. Parvatareddy, T. Chang, N. Iyengar, D. A. Dillard and K. L. Reifsnider: Composites Science and Technology Vol. 54 (1995), p.405.

DOI: https://doi.org/10.1016/0266-3538(95)00083-6

[7] S. F. Zheng, G. J. Weng: European Journal of Mechanics - A/Solids Vol. 21 (2002), p.411.

[8] D. P. N. Vlasveld, H. E. N. Bersee and S. J. Picken: Polymer Vol. 46 (2005), p.12539.

[9] J. Hristova, V. Valeva et al.: Composites Science and Technology Vol. 62 (2002), p.1097.

[10] I. Echeverria, P. L. Kolek, et al.: Journal of Non-Crystalline Solids Vol. 324 (2003), p.242.

[11] J. Kolarik: Journal of Polymer Science: Part B: Polymer Physics Vol. 41 (2003), p.736.

[12] S. Jazouli, W. B. Luo, F. Bremand and T. Vu-Khanh: Polymer Testing Vol. 24 (2005), p.463.

[13] W. B. Luo, C. H. Wang and R. G. Zhao: Key Engineering Materials Vol. 340-341 (2007), p.1091.

[14] W. B. Luo, T. Q. Yang, Q. L. An: Acta Mechanica Solida Sinica Vol. 14 (2001), p.195.

[15] W. Brostow: Materials Research Innovations Vol. 3 (2000), p.347.

[16] G. B. McKenna: Journal of Non-Crystalline Solids Vol. 172-174 (1994), p.756.

[17] G. B. McKenna: Computational Materials Science Vol. 4 (1995), p.349.