Cyclic Deformation of Al-Mg Single Crystals with a Single Slip Orientation


Article Preview

Fully reversed tension-compression fatigue tests were performed on solid-solutioned Al-0.7mass%Mg single crystals with a single slip orientation under constant plastic-strain amplitudes. Dislocation microstructures were quantitatively examined by transmission electron microscopy. The cyclic stress–strain curve (CSSC) exhibited three distinct regions with a short plateau region in the intermediate plastic-strain amplitude range, and the plateau stress was 26MPa. Characteristic microstructures were developed corresponding to the three regions in the CSSC. Vein structure was observed at the low strain-amplitude region. In the plateau regime, the persistent slip bands (PSBs) were observed. Labyrinth structure was also observed at the higher strain-amplitude region. The plateau stress, the cyclic flow stress of PSBs, can be explained by considering not only the Orowan bowing stress and the dipole passing stress of screw dislocations but also solid-solution hardening by Mg atoms.



Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




T. Fujii et al., "Cyclic Deformation of Al-Mg Single Crystals with a Single Slip Orientation", Materials Science Forum, Vols. 561-565, pp. 2213-2216, 2007

Online since:

October 2007




[1] P. Lukáš, M. Klesnil and J. Krejčí: Phys. Stat. Sol. 27 (1968), 545.

[2] S. J. Basinski, Z. S. Basinski and A. Howie: Phil. Mag. 19 (1969), 899.

[3] P. J. Woods: Phil. Mag. 28 (1973), 155.

[4] H. Mughrabi: Mater. Sci. Eng. 33 (1978), 207.

[5] H. Mughrabi, F. Ackermann and K. Herz: Proceedings of the Symposium on Fatigue Mechanisms, edited by J. T. Fong, ASTM STP675 (1979), 69.

[6] Z. S. Basinski, A. S. Korbel and S. J. Basinski: Acta Metall. 28 (1980), 191.

[7] F. Ackermann, L. P. Kubin, J. Lèpinoux and H. Mughrabi: Acta Metall. 32 (1984), 715.

[8] L. Buchinger, S. Stanzl and C. Laird: Phil. Mag. A 50 (1984), 275.

[9] M. Kato, N. Honjo and T. Fujii: ISIJ Intl. 37 (1997), 1224.

[10] C. Watanabe, K. Kanmuri, M. Kato, S. Onaka and T. Fujii: Phil. Mag. A 82 (2002). 1317.

[11] T. Fujii, H. Shintate, H. Yaguchi, H. Mitani, A. Inada, K. Shinkai, S. Kumai and M. Kato: ISIJ Intl. 37 (1997), 1230.


[12] H. Yaguchi, H. Mitani, K. Nagano, T. Fujii and M. Kato: Mater. Sci. Eng. A 315, (2001), 189.

[13] T. Fujii, C. Watanabe, Y. Nomura, N. Tanaka and M. Kato: Mater. Sci. Eng. A 319-321 (2001), 592.

[14] T. Fujii, N. Sawatari, S. Onaka and M. Kato: Mater. Sci. Eng. A 387-389C, (2004), 486.

[15] O. Vorren and N. Ryum: Acta metall. 36 (1988), 1443.

[16] H. J. Seemann and F. Stavenov: Z. Metallkd. 52 (1961), 667.

[17] S. Kritzinger, P. S. Dobson and R. E. Smallman: Phil. Mag. 16 (1967), 217.

[18] J. T. McGrath and G. W. Waldron: Phil. Mag. 9 (1964), 249.

[19] B. Ramaswami and W. J. Russell: Mater. Sci. Eng. 39 (1979), 117.

[20] H. Mughrabi and F. Pschenitzka: Phil. Mag. 85 (2005), 3029.

[21] L. M. Brown: Phil. Mag. 86 (2006), 4055.

[22] H. Mughrabi: Acta Metall. 31 (1983), 1367.