Fatigue Life Enhancement by Surface Coating of Ni/Cu Multilayered Films


Article Preview

Effect of Ni/Cu multilayer coating on fatigue durability was investigated. The Ni/Cu multilayered films were coated on cylindrical copper specimens by electroplating technique. Thickness of individual component layers was h=20nm and 100nm and the total thickness was 5μm. The specimens with a conventional nickel coating and uncoated specimens were also prepared. Push-pull fatigue tests were carried out in air at room temperature. It was found that the specimens with the Ni/Cu multilayered coatings exhibited the fatigue lives longer than those of the conventional nickel coating. In particular, the fatigue life with the h=100nm multilayer was at least ten times longer than that with the nickel coating at the stress amplitude of 90MPa. From the electron channelling contrast imaging (ECCI) observation of subsurface areas of the copper specimens, dislocation structures peculiar to fatigue deformation was suppressed by the surface coatings.



Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee






Y. Kaneko et al., "Fatigue Life Enhancement by Surface Coating of Ni/Cu Multilayered Films", Materials Science Forum, Vols. 561-565, pp. 2393-2398, 2007

Online since:

October 2007




[1] M.N. Baibich, J.M. Broto, A. Fert, Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich and J. Chazelas: Physical Review Lett. Vol. 61 (1988), p.2472.

DOI: 10.1103/physrevlett.61.2472

[2] M. Alper, K. Attenborough, R. Hart, S.J. Lane, D.S. Lashmore, C. Younes and W. Schwarzacher: Appl. Phys. Lett. Vol. 63 (1993), p.2144.

DOI: 10.1063/1.110567

[3] K.D. Bird and M. Schlesinger: J. Electrochem. Soc. Vol. 142 (1995), p. L65.

[4] I. Kazeminezhad and W. Schwarzacher: J. Solid State Electrochem. Vol. 8 (2004), p.187.

[5] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Progress in Materials Science Vol. 45 (2000), p.103.

[6] D.M. Tench and J.T. White: J. Electrochem. Soc. Vol. 138 (1991), p.3757.

[7] S. Menezes and D.P. Anderson: J. Electrochem. Soc. Vol. 137 (1990), p.440.

[8] D. Simunovich, M. Schlesinger and D.D. Snyder: J. Electrochem. Soc. Vol. 141 (1994), p. L10.

[9] R.R. Oberle and R.C. Cammarata: Scripta Metall. Mater. Vol. 32 (1995), p.583.

[10] Y. Kaneko, Y. Mizuta, Y. Nishijima and S. Hashimoto: J. Mater. Sci. Vol. 40 (2005), p.3231.

[11] M.R. Stoudt, R.C. Cammarata and R.E. Ricker: Scripta Mater. Vol. 43 (2000), p.491.

[12] S. Suresh: Fatigue of Materials (Cambridge University Press, Cambridge 1998).

[13] Y. Kaneko and S. Hashimoto: JEOL News Vol. 38 (2003), p.20.

[14] Z.S. Basinski and S.J. Basinski: Scripta Metall. Vol. 18 (1984), p.851.

[15] Y. Kaneko, T. Mimaki and S. Hashimoto: Acta Mater. Vol. 47 (1999), p.165.

[16] P. Morin, M. Pitaval, D. Besnard and G. Fontaine: Phil. Mag. Vol. 40 (1979), p.511.

[17] A.J. Wilkinson and P.B. Hirsch: Micron Vol. 28 (1997), p.279.

[18] B.A. Simkin and M.A. Crimp: Ultramicroscopy Vol. 77 (1999), p.65.

[19] R. Zauter, F. Petry, M. Bayerlein, C. Sommer, H. -J. Christ and H. Mughrabi: Phil. Mag. A Vol. 66 (1992), p.425.

[20] D. Melisova, B. Weiss and R. Stickler: Scripta Mater. Vol. 36 (1997), p.1061.

[21] Y. Kaneko, K. Fukui and S. Hashimoto: Mater. Sci. Eng. A Vol. 400-401 (2005), p.413.

[22] Y. Kaneko, M. Ishikawa and S. Hashimoto: Mater. Sci. Eng. A Vol. 400-401 (2005), p.418.

[23] Y. Kaneko, S. Hirota and S. Hashimoto: Key Eeg. Mater., in printing.

[24] R. Wang and H. Mughrabi: Mater. Sci. Eng. Vol. 63 (1984), p.147.

In order to see related information, you need to Login.