Improvement of Strength, Weibull Modulus and Damage Tolerance of SiC


Article Preview

This paper reports the significant effects of addition of 30 nm SiC, polytitanocarbosilane and SiC fabric to enhance the mechanical reliability of SiC. The flexural strengths of dense SiC hot-pressed with 800 nm particles (average strength 565 MPa for Y2O3-Al2O3 additives and 640 MPa for Yb2O3-Al2O3 additives) were enhanced to average strength 735-820 MPa by the addition of 30 nm SiC particles (25 vol%). Addition of polytitanocarbosilane (3 vol%, precursor of SiC fiber) to the bimodal SiC powder compact with Y2O3-Al2O3 additives provided more excellent mechanical properties of average strength 910 MPa, fracture toughness 5.2 MPa·m1/2 and Weibull modulus 11.3. SiC fabric and SiC (60 vol%) - Al2O3 (40 vol%) sheet of 60 micrometer thick were alternatively laminated and bonded to the surfaces of dense SiC under the pressure of 5 MPa. The SiC fabric prevented the propagation of the cracks formed by Vickers indentor and showed a significant nonlinear stress-strain curve. As a result, no change in the strength was measured before and after the introduction of cracks.



Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




Y. Hirata et al., "Improvement of Strength, Weibull Modulus and Damage Tolerance of SiC", Materials Science Forum, Vols. 561-565, pp. 489-494, 2007

Online since:

October 2007




[1] R.A. Alliegro, L.B. Coffin and J.R. Tinklepaugh: J. Am. Ceram. Soc., Vol. 39 (1956), pp.386-389.

[2] F.F. Lange: J. Mate. Sci., Vol. 10 (1975), pp.314-320.

[3] M.A. Mulla and V.D. Krstic: Am. Ceram. Soc. Bull., Vol. 70 (1991), pp.439-443.

[4] X.H. Wang and Y. Hirata: J. Ceram. Soc. Japan, Vol. 112 (2004), pp.22-28.

[5] N. Hidaka and Y. Hirata: Ceram. Trans., Vol. 152 (2004), pp.109-118.

[6] S. Tabata and Y. Hirata: Ceram. Trans., Vol. 152 (2004), pp.119-128.

[7] N. Hidaka, Y. Hirata and S. Sameshima: J. Ceram. Proc. Res., Vol. 3 (2002), pp.271-277.

[8] Y. Hirata and W.H. Shih, Advances in Science and Technology 14, Proceedings of 9 th CIMTEC - World Ceramics Congress, Ceramics: Getting into the 2000's-Part B, 1999, edited by P. Vincenzini, Techna Srl., Faenza, pp.637-644.

[9] S. Tabata, Y. Hirata, S. Sameshima, N. Matsunaga and K. Ijichi: J. Ceram. Soc. Japan, Vol. 114 (2006), pp.239-244.

[10] N. Hidaka, Y. Hirata, X.H. Wang and S. Tabata: J. Ceram. Soc. Japan, Vol. 113 (2005), pp.143-148.

[11] N. Hidaka, Y. Hirata, S. Sameshima and H. Sueyoshi: J. Ceram. Proc. Res., Vol. 5 (2004), pp.331-336.

[12] N. Hidaka and Y. Hirata: J. Ceram. Soc. Japan, Vol. 113 (2005), pp.446-472.

[13] N. Hidaka and Y. Hirata: Proceedings of 6 th Pacific Rim Conference on Ceramic and Glass Technology - Pac Rim 6 (CDR), The American Ceramic Society (2006).

[14] N. Matsunaga, N. Hidaka, S. Sameshima and Y. Hirata: Key Engineering Materials, 2007, in press.

[15] R. Dong and Y. Hirata: J. Ceram. Soc. Japan., Vol. 111 (12) (2003), pp.912-918.

[16] R.J. Kerans and T.A. Parthasarathy: Composites Part A, Vol. 30 (4) (1999), pp.521-524.

[17] A.G. Evans and F.W. Zok: J. Mater. Soc., Vol. 29 (15) (1994), pp.3857-3896.

[18] J.B. Davis, J.P.A. Lofvander, A.G. Evans, E. Bischoff and M.L. Emiliani: J. Am. Ceram. Soc., Vol. 76 (5) (1993), pp.1249-1257.

[19] N.J. Pagano: Composites Part B, Vol. 29 (1998), pp.93-119, 121-130.

[20] Y. Hirata, K. Hayata, T. Maeda and M. Shibuya: J. Am. Ceram. Soc., Vol. 87 (6) (2004), pp.996-1001.

[21] R. Dong, Y. Hirata, H. Sueyoshi, M. Higo and Y. Uemura: J. Eur. Ceram. Soc., Vol. 24 (1) (2004), pp.53-64.

[22] E.M. Levin, C.R. Robbins and H.F. McMurdie: Phase Diagrams for Ceramists, 1969 Supplement, edited by M. K. Reser. Am. Ceram. Soc., Columbus, OH (1969), p.165.

[23] R.A. Swalin, Thermodynamics of Solid, John Wiley & Sons, New York (1972), pp.148-152, 180-184.

[24] R.H. Doremus, Rates of Phase Transformations, Academic Press. Inc., Orlando, Florida (1985), pp.129-148.