Improvement of Strength, Weibull Modulus and Damage Tolerance of SiC

Abstract:

Article Preview

This paper reports the significant effects of addition of 30 nm SiC, polytitanocarbosilane and SiC fabric to enhance the mechanical reliability of SiC. The flexural strengths of dense SiC hot-pressed with 800 nm particles (average strength 565 MPa for Y2O3-Al2O3 additives and 640 MPa for Yb2O3-Al2O3 additives) were enhanced to average strength 735-820 MPa by the addition of 30 nm SiC particles (25 vol%). Addition of polytitanocarbosilane (3 vol%, precursor of SiC fiber) to the bimodal SiC powder compact with Y2O3-Al2O3 additives provided more excellent mechanical properties of average strength 910 MPa, fracture toughness 5.2 MPa·m1/2 and Weibull modulus 11.3. SiC fabric and SiC (60 vol%) - Al2O3 (40 vol%) sheet of 60 micrometer thick were alternatively laminated and bonded to the surfaces of dense SiC under the pressure of 5 MPa. The SiC fabric prevented the propagation of the cracks formed by Vickers indentor and showed a significant nonlinear stress-strain curve. As a result, no change in the strength was measured before and after the introduction of cracks.

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee

Pages:

489-494

DOI:

10.4028/www.scientific.net/MSF.561-565.489

Citation:

Y. Hirata et al., "Improvement of Strength, Weibull Modulus and Damage Tolerance of SiC", Materials Science Forum, Vols. 561-565, pp. 489-494, 2007

Online since:

October 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.