Preparation and Characterization of β-SiAlON Ceramics from High Aluminium Fly Ash via Carbothermal Reduction-Nitridation


Article Preview

In this work, β-sialon ceramics were prepared from high-aluminium fly ash via carbothermal reduction-nitridation (CRN) and the physicochemical properties of the materials such as bulk density, apparent porosity, water absorption and flexural strength were also discussed. The results showed that the percentage of β-sialon phase in the product decreases as the temperature increases from 1400°C and the weight of the sintered specimen experienced an increase during 1350°C~1450°C due to the nitridation reactions, and followed by a gradual decrease till 1550°C for the decomposition of β-sialon. It is indicated that the optimum sintering temperature to obtain the highest yield of β-sialon ~93% lies in 1400°C~1450°C. The SEM images revealed that the prepared β-sialon sintered at 1400°C were mainly in shape of elongated prisms, typically ~5μm in length and 0.5~1μm in width. As the temperature increased to 1500°C and above, β-sialon decomposed and the new phases of SiC and AlN were formed at 1550°C as confirmed by XRD.



Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




J. H. Li et al., "Preparation and Characterization of β-SiAlON Ceramics from High Aluminium Fly Ash via Carbothermal Reduction-Nitridation", Materials Science Forum, Vols. 561-565, pp. 587-590, 2007

Online since:

October 2007




[1] Y. Oyama, O. Kamigaito, Jpn. J. Appl. Phys. Vol 10, (1971), p.1637.

[2] A. A. Kudyba-Jansen, H. T. Hintzen, R. Metselaar, Mater. Res. Bull. Vol 36, (2001), p.1215.

[3] A. D. Mazzoni, E. F. Aglietti, Appl. Clay Sci. Vol 12 (1998), p.447.

[4] The statistical data comes from http: /www. chinatalents. gov. cn/xmtj/detail. aspx?pageid=15.

[5] J. E. Glibert, A. Mosset, Mater. Res. Bull. Vol 33 (1) (1998), p.117.

[6] H. W. Ma, Software on Thermodynamics in Crystalline Petrology, Beijing: Geological Publishing House (in Chinese), 1999, p.9.

[7] T. Ekström, J. Mater. Sci. Vol 24 (1989), 1853.

[8] S. C. Vieira, A.S. Ramos, M.T. Vieira, Ceram. Int. Vol 33 (2007), p.59.

[9] H. Mandal, J. Eur. Ceram. Soc. Vol 19 (1999), p.2349.

[10] Q. Qiu, V. Hlavacek, and S. Prochazka, Ind. Eng. Chem. Res. Vol 44 (2005), p.2469.

[11] J. Wang, N. Li, C. C. Shi, C. C. Jia, J. Univ. Scie. & Tech. Beijing, Vol 7 (2000), 209.

[12] K. J. D. MacKenzie, S. Shimada, T. Aoki, J. Mater. Chem., 1997, 7(3), 527.

[13] K. H. Jack, J. Mater. Sci., Vol 11(1976), p.135.

[14] D. Hiratsuka, J. Tatami, T. Meguro, K. Komeya, I. Hayashi, J. F. Yang and M. Omori, Key Eng. Mater, 2005, p.633.

[15] V. Viswabaskaran, F. D. Gnanam, B. Balasubramanian, Ceram. Int. Vol. 29 (2003). p.561.

[16] J. Mukerji, S. Bandyopadhyay, Indian J. Technol., Vol 23 (1985), p.227.

[17] M. Mitomo, M. Takeuchi, M. Ohmasa, Ceram. Int. Vol 14 (1988), p.43.

[18] C. B. Raju, S. Verma, M. N. Sahu, P. K Jain, S. Choudary, Indian J. Eng. Mater. Sci. 2001, 8, 36.

[19] K. Watari, T. Nagaoka, S. Kanzaki, J. Mat. Sci. 29 (1994) 5801.

[20] T. Ekström, Z. J. Shen, K. J. D. Mackenzie, I. W. M. Brown and G. V. White, J. Mater. Chem., Vol 8 (1998), p.977.

[21] M. E. Bowden and K. J. D. Mackenzie, Mater. Sci. Forum, Vol 599 (1988), p.34.

Fetching data from Crossref.
This may take some time to load.