Structure of Natural Nano-Laminar Composites: TEM Observation of Nacre


Article Preview

Nacre is a natural composite material making up the inner structure of mollusk shells. It has been of great interest in materials research due to its mechanical properties far exceeding that of its individual components: well ordered plates of aragonite (a CaCO3 polymorph) within an organic polymer matrix. Generally the aragonite plates had been treated as single crystals and mechanical behavior explained as the result of micro-scale mechanisms between plates and matrix. However, recent work has shown that the plates themselves are made up of smaller nano-scale structures, which are also thought to contribute to the bulk properties. In this work, transmission electron microscopy (TEM) was used to observe the nano-scale structure of nacre from abalone. “Nanograins” of aragonite surrounded by organic material was observed, showing composite structure within aragonite plates.



Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




T. Sumitomo et al., "Structure of Natural Nano-Laminar Composites: TEM Observation of Nacre", Materials Science Forum, Vols. 561-565, pp. 713-716, 2007

Online since:

October 2007




[1] C. Grégoire, in: Mollusca, edited by M. Florkin, B. T. Scheer, Academic Press, New York (1972), p.45.

[2] M. Sarikaya: Microsc. Res. Tech. Vol. 27 (1994), p.360.

[3] K. M. Towe, G. H. Hamilton: Calc. Tiss. Res. Vol. 1 (1968), p.306.

[4] G. Bevelander, H. Nakahara: Calc. Tiss. Res. Vol. 3 (1969), p.84.

[5] G. Bevelander, H. Nakahara: Calc. Tiss. Res. Vol. 5 (1970), p.1.

[6] L. Addadi, D. Joester, F. Nudelman, S. Weiner: Chem. Eur. J. Vol. 12 (2006), p.980.

[7] S. Weiner, W. Traub: Phil. Trans. R. Soc. Lond. B Vol. 304 (1984), p.425.

[8] A. Lin, M. A. Meyers: Mater. Sci. Eng., A Vol. 390 (2005), p.27.

[9] H. Nakahara: Venus: The Japanese Journal of Malacology Vol. 38 (1979), p.205.

[10] M. Rousseau, E. Lopez, A. Couté, G. Mascarel, D. C. Smith, R. Naslain, X. Bourrat: J. Struct. Biol. Vol. 149 (2005), p.149.


[11] J. D. Currey: Proc. R. Soc. Lond. B. Vol. 196 (1977), p.443.

[12] A. P. Jackson, J. F. V. Vincent, R. M. Tuner: Proc. R. Soc. Lond. B. Vol. 234 (1988), p.415.

[13] R. Menig, M. H. Meyers, M. A. Meyers, K. S. Vecchio: Acta. Mater. Vol. 48 (2000), p.2383.

[14] F. Song, A. K. Soh, Y. L. Bai: Biomaterials Vol. 24 (2003), p.3623.

[15] R. Z. Wang, Z. Suo, A. G. Evans, N. Yao, I. A. Aksay: J. Mater. Res. Vol. 16 (2001), p.2485.

[16] R. Z. Wang, H. B. Wen, F. Z. Cui, H. B. Zhang, H. D. Li: J. Mater. Sci. Vol. 30 (1995), p.2299.

[17] F. Barthelat, C. -M. Li, C. Comi, H. D. Espinosa: J. Mater. Res. Vol. 21 (2006), p. (1977).

[18] A. G. Evans, Z. Suo, R. Z. Wang, I. A. Aksay, M. Y. He, J. W. Hutchinson: J. Mater. Res. Vol. 16 (2001), p.2475.

[19] B. L. Smith, T. E. Schäffer, M. Viani, J. B. Thompson, N. A. Frederick, J. Kindt, A. M. Belcher, G. D. Stucky, D. E. Morse, P. K. Hansma: Nature Vol. 399 (1999), p.761.


[20] K. S. Katti, D. R. Katti, S. M. Pradhan, A. Bhosle: J. Mater. Res. Vol. 20 (2005), p.1097.

[21] N. Watabe: J. Ultra. Res. Vol. 12 (1965), p.351.

[22] B. J. F. Bruet, H. J. Qi, M. C. Boyce, R. Panas, K. Tai, L. Frick, C. Ortiz: J. Mater. Res. Vol. 20 (2005), p.2400.

[23] B. Mohanty, K. S. Katti, D. R. Katti, D. Verma: J. Mater. Res. Vol. 21 (2006), p. (2045).

[24] M. Rousseau, E. Lopez, P. Stempflé, M. Bendlé, L. Franke, A. Guette, R. Naslain, X. Bourrat: Biomaterials Vol. 26 (2005), p.6254.


[25] X. Li, W. -C. Chang, Y. J. Chao, R. Wang, M. Chang: Nano Lett. Vol. 4 (2004), p.613.

[26] Y. Oaki, H. Imai: Angew. Chem. Int. Ed. Vol. 44 (2005), p.6571.

[27] X. Li, Z. -H. Xu, R. Wang: Nano Lett. Vol. 6 (2006), p.2301.

[28] P. Simon, W. Carrillo-Cabrera, P. Formánek, C. Göbel, D. Geiger, R. Ramlau, H. Tlatlik, J. Buder, R. Kniep: J. Mater. Chem. Vol. 14 (2004), p.2218.