Peculiarities of Plastic Deformation and Failure of Nanoparticles of B.C.C. Transition Metals


Article Preview

Atomic mechanisms of the beginning of plastic deformation and failure initiation in nanoparticles of b.c.c. transition metals are presented in this report. It is shown that strength level of nanoparticles of b.c.c. transition metals is pre-determined by the lattice instability within the local region of the crystal. At uniaxial tension even at low temperatures perfect crystal becomes unstable to shear („orthorhombic“ path), i.e. local shear instability is the main mechanism of stress relaxation in nanoparticles of b.c.c. metals. Specific features of local instability of nanoparticle under hydrostatic tension are considered. A model of the temperature dependence of strength is offered. It is shown that nanoparticle strength decreases as square root function of temperature with temperature growth. Just this is essential difference of the temperature dependence of nanoparticle strength from the same for “ordinary” single- and polycrystals.



Materials Science Forum (Volumes 567-568)

Edited by:

Pavel Šandera




S. Kotrechko et al., "Peculiarities of Plastic Deformation and Failure of Nanoparticles of B.C.C. Transition Metals", Materials Science Forum, Vols. 567-568, pp. 65-68, 2008

Online since:

December 2007




[1] Y. T. Zhu, T. C. Lowe and T. G. Langdon: Scripta Mater. Vol. 51 (2004), p.825.

[2] A.T. Paxton, P. Gumbsch and M. Methfessel: Phil. Mag. Lett., 63 (1991), p.267.

[3] D. Roundy, C.R. Krenn and M.L. Cohen, J.W.: Phil. Mag. A, 81 (2001) p.1725.

[4] W. Luo, D. Roundy, M.L. Cohen and J.W. Morris: Phys. Rev. B: 66 (2002) 094110.

[5] M. Sob, L.G. Wang and V. Vitek: Mater. Sci. Eng. A234-236 (1997) p.1075.

[6] M. Cerny, P. Sandera and J. Pokluda: Czechoslovak Journal of Physics, Vol. 49 (1999), p.1495.

[7] M. F. Horstemeyer, M.I. Baskes and S.J. Plimpton: Theor. Appl. Fract. Mech. Vol. 37 (2001), p.49.

[8] P.V. Makarov, S. Schmauder, O.I. Cherepanov et. al.: Theor. Appl. Fract. Mech. vol. 37 (2001), p.183.

[9] M.W. Finnis, J.E. Sinclair: Phil. Mag.: A, 50 (1984) p.45.

[10] M. I. Mendelev, S. Han, D. J. Srolovitz.: Phil. Mag. A, 83 (2003) p.3977.

[11] S. Kotrechko, A.V. Filatov, A.V. Ovsjannikov: Theor. Appl. Fract. Mech. vol. 45 (2006) p.92.

[12] C.R. Krenn, D. Roundy, J.W. Morris Jr. M, Marvin L. Cohen: Mater. Sci. Eng. vol. A319-321 (2001) p.111.

[13] G. Leibfried: Gittertherie der mechanischer und thermischen eigenschaften der kristalle Handbuch der physic (Band VII Teil 2 Sringer-verlag 1955).

DOI: 10.1007/978-3-642-45827-9_2

Fetching data from Crossref.
This may take some time to load.