Tensile Strength of Perfect Cubic Crystals under Superimposed Transverse Plain Stress


Article Preview

Influence of biaxial stress applied perpendicularly to the [100] loading axis on the tensile stress-strain response is studied from first principles. Crystals of four cubic metals Mo, W, Ir and Au were selected as particular case studies. The results obtained show that, within a limited range of biaxial stresses, the tensile stress increases almost linearly with increasing transverse biaxial stress. The factor that expresses the slope of the linear function changes with applied tensile strain. A region of tensile stability of cubic crystals is also discussed.



Materials Science Forum (Volumes 567-568)

Edited by:

Pavel Šandera




M. Černý and J. Pokluda, "Tensile Strength of Perfect Cubic Crystals under Superimposed Transverse Plain Stress", Materials Science Forum, Vols. 567-568, pp. 73-76, 2008

Online since:

December 2007




[1] C. R. Krenn, D. Roundy, M. L. Cohen, D. C. Chrzan, and J. W. Morris, Jr.: Phys. Rev. B Vol. 65 (2002), p.134111.

[2] D. Xu, R. Yang, J. Li, J. Chang, H. Wang, D. Li, and S. Yip: Comp. Mater. Sci. Vol. 36 (2006), p.60.

[3] A. Kelly, W. R. Tyson and A. H. Cottrell: Phil. Mag. Vol. 15 (1967), p.567.

[4] M. Černý and J. Pokluda: Mater. Sci. Eng. A (2007), accepted.

[5] Y. Umeno and T. Kitamura: Mater. Sci. Eng. B Vol. 88 (2002), p.79.

[6] M. Černý and J. Pokluda: submitted to Phys. Rev. B (2007 ).

[7] D. M. Clatterbuck, D. C. Chrzan and J. W. Morris, Jr.: Scripta Mater. Vol. 49 (2003), p.1007.

[8] G. Kresse and J. Hafner: J. Phys.: Condens. Matter Vol. 6 (1994), p.8245.

[9] G. Kresse and J. Furthmüller: Phys. Rev. B Vol. 54 (1996), pp.11-169.

[10] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990), p.7892.

[11] P. E. Blöchl: Phys. Rev. B Vol. 50 (1994), p.17953.

[12] J. P. Perdew and Y. Wang: Phys. Rev. B Vol. 45 (1992), p.13244.

[13] J. Pokluda and P. Šandera: Phys. Stat. Solidi Vol. 167b (1991), p.543.

[14] G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT Press, Cambridge, MA 1971).