Anisotropic Mechanical Properties of Nickel Foams Fabricated by Powder Metallurgy

Abstract:

Article Preview

In the present study, porous nickel foam samples with pore sizes of 20 μm and 150 μm and porosities of 60 % and 70 % were fabricated by the space-holding sintering method via powder metallurgy. Electron scanning microscopy (SEM) and Image-Pro Plus were used to characterise the morphological features of the porous nickel foam samples. The anisotropic mechanical properties of porous nickel foams were investigated by compressive testing loading in different directions, i.e. the major pore axis and minor pore axis. Results indicated that the nominal stress of the nickel foam samples increases with the decreasing of the porosity. Moreover, the foam sample exhibited significantly higher nominal stress for loading in the direction of the major pore axis than loading in direction of the minor pore axis. It is also noticeable that the nominal stress of the nickel foams increases with the decreasing of the pore size. It seems that the deformation behaviour of the foams with a pore size in the micron-order differs from those with a macro-porous structure.

Info:

Periodical:

Edited by:

Byungsei Jun, Hyungsun Kim, Chanwon Lee, Soo Wohn Lee

Pages:

277-280

DOI:

10.4028/www.scientific.net/MSF.569.277

Citation:

Y. Yamada et al., "Anisotropic Mechanical Properties of Nickel Foams Fabricated by Powder Metallurgy", Materials Science Forum, Vol. 569, pp. 277-280, 2008

Online since:

January 2008

Export:

Price:

$35.00

[1] J. Banhart: Progress in Materials Science, Vol. 46, (2001), p.559.

[2] C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino and T. Asahina: Scripta Mater., Vol. 45(10), (2001), p.1147.

[3] S.K. Maiti, L.J. Gibson and M.F. Ashby: Acta Mater., Vol. 32(11), (1984), p. (1963).

[4] Y. Sugimura, J. Meyer, M.Y. He, H. Bart-smith, J. Grenstedt and A.G. Evans: Acta Mater., Vol. 45(12), (1997), p.5245.

[5] A.E. Simone and L.J. Gibson: Acta Mater., Vol. 46(6), (1998), p.2139.

[6] K. Okuno, M. Kato, K. Harada, J.J. Park, K. Emura, M. Yao, T. Iwasaki, S. Tanase and T. Sakai: Sei Technical Review, Vol. 4(64), (2007), p.43.

[7] C.E. Wen, Y. Yamada, K. Shimojima, M. Mabuchi, M. Nakamura, T. Asahina, T. Aizawa and K. Higashi: Mater. Trans., JIM, Vol. 41(9), (2000), p.1192.

[8] C.E. Wen, M. Mabuchi, Y. Yamada, Y. Chino, K. Shimojima, H. Hosokawa and T. Asahina: J. Mater. Sci. Lett., Vol. 22, (2003), p.1407.

[9] T.G. Nieh, J.H. Kinney, J. Wadsworth and A.J.C. Ladd: Scripta Mater., Vol. 38, (1998), p.1487.

[10] J.L. Grenestedt and K. Tanaka: Scripta Mater., Vol. 40(1), (1999), p.71.

[11] L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties. Second ed., Cambridge University Press, Cambridge, (1997), pp.1-510.

[12] H. Bart-smith, A.F. Bastawros, D.R. Mumm, A.G. Evans, D.J. Sypeck and H.N.G. Wadley: Acta Mater., 46(10), (1998), p.3583.

[13] P.H. Thornton and C.L. Magee: Metall. Trans. A, Vol. 6A, (1975), p.1253.

[14] Y. Yamada, C.E. Wen, K. Shimojima, M. Mabuchi, M. Nakamura, T. Asahina, T. Aizawa and K. Higashi: Mater. Trans., JIM, Vol. 41 (9), (2000), p.1136.

[15] Y. Yamada, C. E. Wen, K. Shimojima, H. Hosokawa, Y. Chino and M. Mabuchi: Mater. Trans., Vol. 43(6), (2002), p.1298.

In order to see related information, you need to Login.